Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(15): 4670-4684, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37166404

RESUMO

Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.


Assuntos
Infecções Bacterianas , Citrus , Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Liberibacter/genética , Plantas Geneticamente Modificadas/genética , Citrus/genética , Doenças das Plantas/microbiologia , Hemípteros/fisiologia
2.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931906

RESUMO

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Proteínas de Bactérias , Citrus/microbiologia , Grupo dos Citocromos b , Ferritinas , Liberibacter , Lipopolissacarídeos/metabolismo , Estresse Nitrosativo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(25): 12173-12182, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31152138

RESUMO

The hydrogen-isotopic compositions (2H/1H ratios) of lipids in microbial heterotrophs are known to vary enormously, by at least 40% (400‰) relative. This is particularly surprising, given that most C-bound H in their lipids appear to derive from the growth medium water, rather than from organic substrates, implying that the isotopic fractionation between lipids and water is itself highly variable. Changes in the lipid/water fractionation are also strongly correlated with the type of energy metabolism operating in the host. Because lipids are well preserved in the geologic record, there is thus significant potential for using lipid 2H/1H ratios to decipher the metabolism of uncultured microorganisms in both modern and ancient ecosystems. But despite over a decade of research, the precise mechanisms underlying this isotopic variability remain unclear. Differences in the kinetic isotope effects (KIEs) accompanying NADP+ reduction by dehydrogenases and transhydrogenases have been hypothesized as a plausible mechanism. However, this relationship has been difficult to prove because multiple oxidoreductases affect the NADPH pool simultaneously. Here, we cultured five diverse aerobic heterotrophs, plus five Escherichia coli mutants, and used metabolic flux analysis to show that 2H/1H fractionations are highly correlated with fluxes through NADP+-reducing and NADPH-balancing reactions. Mass-balance calculations indicate that the full range of 2H/1H variability in the investigated organisms can be quantitatively explained by varying fluxes, i.e., with constant KIEs for each involved oxidoreductase across all species. This proves that lipid 2H/1H ratios of heterotrophic microbes are quantitatively related to central metabolism and provides a foundation for interpreting 2H/1H ratios of environmental lipids and sedimentary hydrocarbons.


Assuntos
Agrobacterium tumefaciens/metabolismo , Bacillus subtilis/metabolismo , Deutério/metabolismo , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Lipídeos/química , NADP/metabolismo , Pseudomonas fluorescens/metabolismo , Rhizobiaceae/metabolismo , Processos Heterotróficos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas
4.
Proc Natl Acad Sci U S A ; 116(36): 18009-18014, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427509

RESUMO

Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citriCa L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.


Assuntos
Antibacterianos , Proteínas de Bactérias/antagonistas & inibidores , Rhizobiaceae/metabolismo , Transativadores/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Avaliação Pré-Clínica de Medicamentos , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Transativadores/genética , Transativadores/metabolismo
5.
J Environ Sci Health B ; 57(5): 333-338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317716

RESUMO

Acetaminophen (APP), frequently used as analgesic and antipyretic drug in our life, is potentially toxic to both animals and humans. A novel acetaminophen degrading strain HZA2, was isolated from the activated sludge, and identified as Shinella sp. based on its 16S rRNA gene sequence analysis, morphological, physiological, and biochemical characterizations. This strain could degrade 100 mg L-1 acetaminophen completely within 12 h, and it was also a very effective strain for the degradation of high concentration of acetaminophen below 3000 mg L-1 under the optimal condition. The optimal degrading conditions of acetaminophen by HZA2 were pH 7.5 and 32.7 °C by the analysis of response surface methodology. Exogenous carbon source could enhance the biodegradation of acetaminophen. During the process, the intermediate metabolites were identified as 4-aminophenol and hydroquinone via gas chromatography-mass spectrometry analysis. The results indicated that strain HZA2 may be a promising bacterium for the bioremediation of acetaminophen pollutions.


Assuntos
Acetaminofen , Rhizobiaceae , Acetaminofen/metabolismo , Biodegradação Ambiental , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Esgotos/microbiologia
6.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656438

RESUMO

The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l-1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides. The results of biodegradation assays showed that Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l-1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.


Assuntos
Acinetobacter/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Pantoea/metabolismo , Rhizobiaceae/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Biodegradação Ambiental , Pantoea/genética , Pantoea/isolamento & purificação , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação
7.
Arch Microbiol ; 203(5): 2689-2698, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33715029

RESUMO

A phytohormone producing, N2-fixing and 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesizing bacterium Ensifer adhaerens KS23 effectively increased the yield and nutritional contents of Pisum sativum var. Arkel. The isolate KS23 showed positive ACC deaminase activity with 174.2 (nmol of α-ketobutyrate/g-1 biomass½ h-1) a 9.7-fold increase in glutathione S-transferase activity. The proximate analysis exhibited an increased yield of protein (21.45%), carbohydrate (38.90%), sulphur (29.94%) starch (27.52%), total ash (35.57%), fat content (27.5%), nitrogen (24.06%) and hydrogen (17.91%) in treated seeds of P. sativum as compared to untreated crop seeds in field trials at Srikot village, Srinagar-246,174 (Garhwal) India. The most desirable essential and non-essential amino-acids content was also enhanced simultaneously by E. adhaerens KS23 as compared to non-treated crop seeds. This study revealed the enhancement of various nutritional contents resulting in quality improvement and an increase in growth productivity of pea. This study provides an encouraging result that may benefit the marginal income of farmers belonging mainly to hilly regions who are dependent on traditional methods of farming and thus improving their economy.


Assuntos
Carbono-Carbono Liases/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Rhizobiaceae/metabolismo , Sementes/crescimento & desenvolvimento , Agricultura , Altitude , Índia , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Rhizobiaceae/isolamento & purificação
8.
Microb Cell Fact ; 20(1): 133, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256737

RESUMO

BACKGROUND: Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO) is a new type of pyridinamide insecticide that regulates insect growth. Because of its wide application in agricultural production and high solubility in water, it poses potential risks to aquatic environments and food chain. RESULTS: In the present study, Ensifer adhaerens CGMCC 6315 was shown to efficiently transform FLO into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM) via a hydration pathway mediated by two nitrile hydratases, PnhA and CnhA. In pure culture, resting cells of E. adhaerens CGMCC 6315 degraded 92% of 0.87 mmol/L FLO within 24 h at 30 °C (half-life 7.4 h). Both free and immobilized (by gel beads, using calcium alginate as a carrier) E. adhaerens CGMCC 6315 cells effectively degraded FLO in surface water. PnhA has, to our knowledge, the highest reported degradation activity toward FLO, Vmax = 88.7 U/mg (Km = 2.96 mmol/L). Addition of copper ions could increase the enzyme activity of CnhA toward FLO by 4.2-fold. Structural homology modeling indicated that residue ß-Glu56 may be important for the observed significant difference in enzyme activity between PnhA and CnhA. CONCLUSIONS: Application of E. adhaerens may be a good strategy for bioremediation of FLO in surface water. This work furthers our understanding of the enzymatic mechanisms of biodegradation of nitrile-containing insecticides and provides effective transformation strategies for microbial remediation of FLO contamination.


Assuntos
Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Hidroliases/metabolismo , Inseticidas/metabolismo , Niacinamida/análogos & derivados , Rhizobiaceae/enzimologia , Rhizobiaceae/metabolismo , Niacinamida/metabolismo , Nitrilas/metabolismo
9.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768893

RESUMO

Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.


Assuntos
Carbono-Carbono Liases/metabolismo , Rhizobiaceae/metabolismo , Estresse Salino , Agricultura/métodos , Produtos Agrícolas , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/crescimento & desenvolvimento , Plantas , Rizosfera , Salinidade , Solo/química , Microbiologia do Solo
10.
Molecules ; 26(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833968

RESUMO

Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.


Assuntos
Fabaceae/metabolismo , Malatos/metabolismo , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/metabolismo , Transporte Biológico , Rhizobiaceae/metabolismo , Simbiose
11.
World J Microbiol Biotechnol ; 37(6): 94, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963474

RESUMO

The application of plant growth-promoting bacteria in agricultural systems is an efficient and environment-friendly strategy to improve crop yields and maintain soil quality. However, as different soils have diverse and specific ecological characteristics and may represent adverse abiotic conditions, in vivo application requires the careful selection of the desired beneficial microorganisms. In this study we report Ensifer adhaerens SZMC 25856 and Pseudomonas resinovorans SZMC 25875 isolates recovered from glyphosate-treated soil to possess yet undiscovered plant growth-enhancing potential. The strains were found to promote the growth of tomato seedlings significantly, to have the ability of synthesizing indole-3-acetic acid and siderophores, to tolerate pH in the range of 6.59-7.96, salinity up to 12.5 g L-1 NaCl and drought up to 125 g L-1 polyethylene glycol 6000, as well as to survive in the presence of various pesticides including glyphosate, diuron, chlorotoluron, carbendazim and thiabendazole, and heavy metals such as Al, Fe, Mn, Zn, Pb and Cu. The plant growth-promoting traits of the examined E. adhaerens and P. resinovorans isolates and their tolerance to numerous abiotic stress factors make them promising candidates for application in different agricultural environments, including soils polluted with glyphosate.


Assuntos
Glicina/análogos & derivados , Pseudomonas/isolamento & purificação , Rhizobiaceae/isolamento & purificação , Solanum lycopersicum/crescimento & desenvolvimento , Glicina/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/microbiologia , Metais Pesados/farmacologia , Pseudomonas/metabolismo , Pseudomonas/fisiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/metabolismo , Rhizobiaceae/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico , Glifosato
12.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709720

RESUMO

3-Hydroxypyridine (3HP) is an important natural pyridine derivative. Ensifer adhaerens HP1 can utilize 3HP as its sole sources of carbon, nitrogen, and energy to grow, but the genes responsible for the degradation of 3HP remain unknown. In this study, we predicted that a gene cluster, designated 3hpd, might be responsible for the degradation of 3HP. The analysis showed that the initial hydroxylation of 3HP in E. adhaerens HP1 was catalyzed by a four-component dehydrogenase (HpdA1A2A3A4) and led to the formation of 2,5-dihydroxypyridine (2,5-DHP). In addition, the SRPBCC component in HpdA existed as a separate subunit, which is different from other SRPBCC-containing molybdohydroxylases acting on N-heterocyclic aromatic compounds. Moreover, the results demonstrated that the phosphoenolpyruvate (PEP)-utilizing protein and pyruvate-phosphate dikinase were involved in the HpdA activity, and the presence of the gene cluster 3hpd was discovered in the genomes of diverse microbial strains. Our findings provide a better understanding of the microbial degradation of pyridine derivatives in nature and indicated that further research on the origin of the discovered four-component dehydrogenase with a separate SRPBCC domain and the function of PEP-utilizing protein and pyruvate-phosphate dikinase might be of great significance.IMPORTANCE 3-Hydroxypyridine is an important building block for the synthesis of drugs, herbicides, and antibiotics. Although the microbial degradation of 3-hydroxypyridine has been studied for many years, the molecular mechanisms remain unclear. Here, we show that 3hpd is responsible for the catabolism of 3-hydroxypyridine. The 3hpd gene cluster was found to be widespread in Actinobacteria, Rubrobacteria, Thermoleophilia, and Alpha-, Beta-, and Gammaproteobacteria, and the genetic organization of the 3hpd gene clusters in these bacteria shows high diversity. Our findings provide new insight into the catabolism of 3-hydroxypyridine in bacteria.


Assuntos
Proteínas de Bactérias/genética , Família Multigênica , Oxirredutases/genética , Piridinas/metabolismo , Rhizobiaceae/genética , Proteínas de Bactérias/metabolismo , Catálise , Oxirredutases/metabolismo , Rhizobiaceae/metabolismo
13.
Arch Microbiol ; 202(7): 1809-1816, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436039

RESUMO

Pigeon pea (Cajanus cajan (L.) Millspaugh) is among the top ten legumes grown globally not only having high tolerance to environmental stresses along, but also has the high biomass and productivity with optimal nutritional profiles. In the present study, 55 isolates of rhizobia were identified from 22 nodule samples of pigeon pea collected from semi-arid regions of India on the basis of morphological, biochemical, plant growth promoting activities and their ability to tolerate the stress conditions viz. pH, salt, temperature and drought stress. Amongst all the 55 isolates, 37 isolates showed effective nodulation under in vitro conditions in pigeon pea. Further, five isolates having multiple PGP activities and high in vitro symbiotic efficiency were subjected to 16S rRNA sequencing and confirmed their identities as Rhizobium, Mesorhizobium, Sinorhizobium sp. Further these 37 isolates were characterized at molecular level using ARDRA and revealed significant molecular diversity. Based on UPGMA clustering analysis, these isolates showed significant molecular diversity. The high degree of molecular diversity is due to mixed cropping of legumes in the region. The assessment of genetic diversity and molecular characterization of novel strains is a very important tool for the replacement of ineffective rhizobial strains with the efficient strains for the improvement in the nodulation and pigeon pea quality. The pigeon pea isolates with multiple PGPR activities could be further used for commercial production.


Assuntos
Cajanus/microbiologia , Clima Desértico , Variação Genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Índia , Mesorhizobium/classificação , Mesorhizobium/genética , Mesorhizobium/metabolismo , Pisum sativum , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/metabolismo , Rhizobium/classificação , Rhizobium/genética , Rhizobium/metabolismo , Sinorhizobium/classificação , Sinorhizobium/genética , Sinorhizobium/metabolismo , Simbiose
14.
Arch Microbiol ; 202(3): 609-616, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31768560

RESUMO

A novel gram-negative, aerobic, non-spore-forming, rod-shaped and non-nitrogen fixing bacterium named strain 24NRT was isolated from wild Lilium pumilum bulbs in Fuping, Baoding City, Hebei province, PR China. The 16S rRNA gene sequences of strains 24NRT showed the highest similarity to Neorhizobium alkalisoli DSM 21826T (98.5%) and N. galegae HAMBI 540T (98.1%). Phylogenetic analysis based on 16S rRNA genes and multilocus sequence analysis (MLSA) based on the partial sequences of atpD-glnII-glnA-recA-ropD-thrC housekeeping genes both indicated that strain 24NRT is a member of the genus Neorhizobium. The average nucleotide identity between the genome sequence of strain 24NRT and that of the isolate N. alkalisoli DSM 21826T was 83.1%, and the digital DNA-DNA hybridization was 20.1%. The G+C content of strain 24NRT was 60.3 mol %. The major cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. Based on phenotypic, phylogenetic, and genotypic data, strain 24NRT is considered to represent a novel species of the genus Neorhizobium, for which the name Neorhizobium lilium sp. nov. is proposed. The type strain is 24NRT (= ACCC 61588T = JCM 33731T).


Assuntos
Endófitos/isolamento & purificação , Lilium/microbiologia , Rhizobiaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Análise de Sequência de DNA
15.
Plant Cell Rep ; 39(1): 3-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31346716

RESUMO

KEY MESSAGE: This article describes the composition of root exudates, how these metabolites are released to the rhizosphere and their importance in the recruitment of beneficial microbiota that alleviate plant stress. Metabolites secreted to the rhizosphere by roots are involved in several processes. By modulating the composition of the root exudates, plants can modify soil properties to adapt and ensure their survival under adverse conditions. They use several strategies such as (1) changing soil pH to solubilize nutrients into assimilable forms, (2) chelating toxic compounds, (3) attracting beneficial microbiota, or (4) releasing toxic substances for pathogens, etc. In this work, the composition of root exudates as well as the different mechanisms of root exudation have been reviewed. Existing methodologies to collect root exudates, indicating their advantages and disadvantages, are also described. Factors affecting root exudation have been exposed, including physical, chemical, and biological agents which can produce qualitative and quantitative changes in exudate composition. Finally, since root exudates play an important role in the recruitment of mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR), the mechanisms of interaction between plants and the beneficial microbiota have been highlighted.


Assuntos
Micorrizas/metabolismo , Exsudatos de Plantas/química , Raízes de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Transporte Biológico Ativo , Microbiota , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Exsudatos de Plantas/metabolismo , Plantas/genética , Rhizobiaceae/metabolismo , Rizosfera , Microbiologia do Solo , Estresse Fisiológico/fisiologia
16.
Proc Natl Acad Sci U S A ; 114(19): 5041-5046, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438996

RESUMO

In legume nodules, rhizobia differentiate into nitrogen-fixing forms called bacteroids, which are enclosed by a plant membrane in an organelle-like structure called the symbiosome. In the Inverted Repeat-Lacking Clade (IRLC) of legumes, this differentiation is terminal due to irreversible loss of cell division ability and is associated with genome amplification and different morphologies of the bacteroids that can be swollen, elongated, spherical, and elongated-branched, depending on the host plant. In Medicago truncatula, this process is orchestrated by nodule-specific cysteine-rich peptides (NCRs) delivered into developing bacteroids. Here, we identified the predicted NCR proteins in 10 legumes representing different subclades of the IRLC with distinct bacteroid morphotypes. Analysis of their expression and predicted sequences establishes correlations between the composition of the NCR family and the morphotypes of bacteroids. Although NCRs have a single origin, their evolution has followed different routes in individual lineages, and enrichment and diversification of cationic peptides has resulted in the ability to impose major morphological changes on the endosymbionts. The wide range of effects provoked by NCRs such as cell enlargement, membrane alterations and permeabilization, and biofilm and vesicle formation is dependent on the amino acid composition and charge of the peptides. These effects are strongly influenced by the rhizobial surface polysaccharides that affect NCR-induced differentiation and survival of rhizobia in nodule cells.


Assuntos
Proteínas de Bactérias/metabolismo , Medicago truncatula/microbiologia , Peptídeos/metabolismo , Rhizobiaceae/metabolismo , Rizoma/microbiologia , Simbiose/fisiologia , Proteínas de Bactérias/genética , Peptídeos/genética , Rhizobiaceae/genética
17.
Ecotoxicol Environ Saf ; 205: 111333, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979802

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are a specific category of microbes that improve plant growth and promote greater tolerance to metal stress through their interactions with plant roots. We evaluated the effects of phytoremediation combining the cadmium accumulator Solanum nigrum L. and two Cd- and Pb-resistant bacteria isolates. To understand the interaction between PGPR and their host plant, we conducted greenhouse experiments with inoculation treatments at Nanjing Agricultural University (Jiangsu Province, China), in June 2018. Two Cd- and Pb-resistant PGPR with various growth-promoting properties were isolated from heavy metal-contaminated soil. 16S rRNA analyses indicated that the two isolates were Bacillus genus, and they were named QX8 and QX13. Pot experiments demonstrated that inoculation may improve the rhizosphere soil environment and promote absorption of Fe and P by plants. Inoculation with QX8 and QX13 also enhanced the dry weight of shoots (1.36- and 1.7-fold, respectively) and roots (1.42- and 1.96-fold) of plants growing in Cd- and Pb-contaminated soil, and significantly increased total Cd (1.28-1.81 fold) and Pb (1.08-1.55 fold) content in aerial organs, compared to non-inoculated controls. We also detected increases of 23% and 22% in the acid phosphatase activity of rhizosphere soils inoculated with QX8 and QX13, respectively. However, we did not detect significant differences between inoculated and non-inoculated treatments in Cd and Pb concentrations in plants and available Cd and Pb content in rhizosphere soils. We demonstrated that PGPR-assisted phytoremediation is a promising technique for remediating heavy metal-contaminated soils, with the potential to enhance phytoremediation efficiency and improve soil quality.


Assuntos
Cádmio/análise , Chumbo/análise , Rhizobiaceae/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Solanum nigrum/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , China , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S , Rizosfera , Solo/química , Poluentes do Solo/metabolismo , Solanum nigrum/crescimento & desenvolvimento , Solanum nigrum/metabolismo
18.
Plant J ; 95(1): 101-111, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676826

RESUMO

Symbiotic nitrogen fixation in legumes requires nodule organogenesis to be coordinated with infection by rhizobia. The plant hormone auxin influences symbiotic infection, but the precise timing of auxin accumulation and the genetic network governing it remain unclear. We used a Lotus japonicus optimised variant of the DII-based auxin accumulation sensor and identified a rapid accumulation of auxin in the epidermis, specifically in the root hair cells. This auxin accumulation occurs in the infected root hairs during rhizobia invasion, while Nod factor application induces this response across a broader range of root hairs. Using the DR5 auxin responsive promoter, we demonstrate that activation of auxin signalling also occurs specifically in infected root hairs. Analysis of root hair transcriptome data identified induction of an auxin biosynthesis gene of the Tryptophan Amino-transferase Related (LjTar1) family following both bacteria inoculation and Nod factor treatment. Genetic analysis showed that both expression of the LjTar1 biosynthesis gene and the auxin response requires Nod factor perception, while common symbiotic pathway transcription factors are only partially required or act redundantly to initiate auxin accumulation. Using a chemical genetics approach, we confirmed that auxin biosynthesis has a functional role in promoting symbiotic infection events in the epidermis.


Assuntos
Ácidos Indolacéticos/metabolismo , Lotus/microbiologia , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Rhizobiaceae/metabolismo , Perfilação da Expressão Gênica , Lotus/metabolismo , Epiderme Vegetal/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose
19.
BMC Genomics ; 20(1): 643, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31405380

RESUMO

BACKGROUND: Ensifer alkalisoli YIC4027, a recently characterized nitrogen-fixing bacterium of the genus Ensifer, has been isolated from root nodules of the host plant Sesbania cannabina. This plant is widely used as green manure and for soil remediation. E. alkalisoli YIC4027 can grow in saline-alkaline soils and is a narrow-host-range strain that establishes a symbiotic relationship with S. cannabina. The complete genome of this strain was sequenced to better understand the genetic basis of host specificity and adaptation to saline-alkaline soils. RESULTS: E. alkalisoli YIC4027 was found to possess a 6.1-Mb genome consisting of three circular replicons: one chromosome (3.7 Mb), a chromid (1.9 Mb) and a plasmid (0.46 Mb). Genome comparisons showed that strain YIC4027 is phylogenetically related to broad-host-range Ensifer fredii strains. Synteny analysis revealed a strong collinearity between chromosomes of E. alkalisoli YIC4027 and those of the E. fredii NGR234 (3.9 Mb), HH103 (4.3 Mb) and USDA257 (6.48 Mb) strains. Notable differences were found for genes required for biosynthesis of nodulation factors and protein secretion systems, suggesting a role of these genes in host-specific nodulation. In addition, the genome analysis led to the identification of YIC4027 genes that are presumably related to adaptation to saline-alkaline soils, rhizosphere colonization and nodulation competitiveness. Analysis of chemotaxis cluster genes and nodulation tests with constructed che gene mutants indicated a role of chemotaxis and flagella-mediated motility in the symbiotic association between YIC4027 and S. cannabina. CONCLUSIONS: This study provides a basis for a better understanding of host specific nodulation and of adaptation to a saline-alkaline rhizosphere. This information offers the perspective to prepare optimal E. alkalisoli inocula for agriculture use and soil remediation.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Genômica , Especificidade de Hospedeiro , Rhizobiaceae/genética , Rhizobiaceae/fisiologia , Genes Bacterianos/genética , Polissacarídeos Bacterianos/biossíntese , Rhizobiaceae/metabolismo , Rizosfera , Solo/química
20.
Mol Microbiol ; 107(1): 24-33, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076560

RESUMO

The AbcR small RNAs (sRNAs) are a fascinating example of two highly conserved sRNAs that differ tremendously at the functional level among organisms. From their transcriptional activation to their regulatory capabilities, the AbcR sRNAs exhibit varying characteristics in three well-studied bacteria belonging to the Rhizobiales order: the plant symbiont Sinorhizobium meliloti, the plant pathogen Agrobacterium tumefaciens, and the animal pathogen Brucella abortus. This review outlines the similarities and differences of the AbcR sRNAs between each of these organisms, and discusses reasons as to why this group of sRNAs has diverged in their genetic organization and regulatory functions across species. In the end, this review will shed light on how regulatory systems, although seemingly conserved among bacteria, can vary based on the environmental niche and lifestyle of an organism.


Assuntos
Pequeno RNA não Traduzido/genética , Rhizobiaceae/genética , Agrobacterium tumefaciens/genética , Evolução Biológica , Brucella abortus/genética , Regulação Bacteriana da Expressão Gênica/genética , Filogenia , RNA Bacteriano/genética , Pequeno RNA não Traduzido/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Rhizobiaceae/metabolismo , Sinorhizobium meliloti/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA