Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(5): 1067-1081.e17, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078707

RESUMO

Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Elementos Nucleotídeos Longos e Dispersos , Proteínas Associadas à Matriz Nuclear/química , Poliadenilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteínas de Ligação a RNA/química , RNA/química , Processamento Alternativo , Animais , Sítios de Ligação , Éxons , Células HeLa , Humanos , Íntrons , Camundongos , Mutação , Motivos de Nucleotídeos , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Splicing de RNA
2.
Mol Cell ; 76(1): 70-81.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31445886

RESUMO

N6-methyladenosine (m6A) modification occurs co-transcriptionally and impacts pre-mRNA processing; however, the mechanism of co-transcriptional m6A-dependent alternative splicing regulation is still poorly understood. Heterogeneous nuclear ribonucleoprotein G (hnRNPG) is an m6A reader protein that binds RNA through RRM and Arg-Gly-Gly (RGG) motifs. Here, we show that hnRNPG directly binds to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) using RGG motifs in its low-complexity region. Through interactions with the phosphorylated CTD and nascent RNA, hnRNPG associates co-transcriptionally with RNAPII and regulates alternative splicing transcriptome-wide. m6A near splice sites in nascent pre-mRNA modulates hnRNPG binding, which influences RNAPII occupancy patterns and promotes exon inclusion. Our results reveal an integrated mechanism of co-transcriptional m6A-mediated splicing regulation, in which an m6A reader protein uses RGG motifs to co-transcriptionally interact with both RNAPII and m6A-modified nascent pre-mRNA to modulate RNAPII occupancy and alternative splicing.


Assuntos
Adenosina/análogos & derivados , Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Precursores de RNA/biossíntese , RNA Mensageiro/biossíntese , Transcrição Gênica , Adenosina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Éxons , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Relação Estrutura-Atividade
3.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336291

RESUMO

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Assuntos
Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Vertebrados , Animais , Humanos , Camundongos , Ratos , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fosforilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Especificidade da Espécie , Vertebrados/genética , Galinhas/genética
4.
J Biol Chem ; 295(33): 11613-11625, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571872

RESUMO

The sequence-specific RNA-binding proteins PTBP1 (polypyrimidine tract-binding protein 1) and HNRNP L (heterogeneous nuclear ribonucleoprotein L) protect mRNAs from nonsense-mediated decay (NMD) by preventing the UPF1 RNA helicase from associating with potential decay targets. Here, by analyzing in vitro helicase activity, dissociation of UPF1 from purified mRNPs, and transcriptome-wide UPF1 RNA binding, we present the mechanistic basis for inhibition of NMD by PTBP1. Unlike mechanisms of RNA stabilization that depend on direct competition for binding sites among protective RNA-binding proteins and decay factors, PTBP1 promotes displacement of UPF1 already bound to potential substrates. Our results show that PTBP1 directly exploits the tendency of UPF1 to release RNA upon ATP binding and hydrolysis. We further find that UPF1 sensitivity to PTBP1 is coordinated by a regulatory loop in domain 1B of UPF1. We propose that the UPF1 regulatory loop and protective proteins control kinetic proofreading of potential NMD substrates, presenting a new model for RNA helicase regulation and target selection in the NMD pathway.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Helicases/metabolismo , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Humanos , Modelos Moleculares , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Domínios Proteicos , RNA Helicases/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/química , Transcrição Gênica
5.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1134-1141, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34159380

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health threat since December 2019, and there is still no highly effective drug to control the pandemic. To facilitate drug target identification for drug development, studies on molecular mechanisms, such as SARS-CoV-2 protein interactions, are urgently needed. In this study, we focused on Nsp2, a non-structural protein with largely unknown function and mechanism. The interactome of Nsp2 was revealed through the combination of affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), and 84 proteins of high-confidence were identified. Gene ontology analysis demonstrated that Nsp2-interacting proteins are involved in several biological processes such as endosome transport and translation. Network analysis generated two clusters, including ribosome assembly and vesicular transport. Bio-layer interferometry (BLI) assay confirmed the bindings between Nsp2- and 4-interacting proteins, i.e. STAU2 (Staufen2), HNRNPLL, ATP6V1B2, and RAP1GDS1 (SmgGDS), which were randomly selected from the list of 84 proteins. Our findings provide insights into the Nsp2-host interplay and indicate that Nsp2 may play important roles in SARS-CoV-2 infection and serve as a potential drug target for anti-SARS-CoV-2 drug development.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Sistemas de Liberação de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas não Estruturais Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(26): 6715-6720, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891675

RESUMO

In aerobically growing cells, the guanine base of RNA is oxidized to 8-oxo-7,8-dihydroguanine (8-oxoG), which induces alteration in their gene expression. We previously demonstrated that the human AUF1 protein binds to 8-oxoG in RNA to induce the selective degradation of oxidized messenger RNA. We herein report that the poly(C)-binding protein PCBP1 binds to more severely oxidized RNA to activate apoptosis-related reactions. While AUF1 binds to oligoribonucleotides carrying a single 8-oxoG, PCBP1 does not bind to such oligoribonucleotides but instead binds firmly to oligoribonucleotides in which two 8-oxoG residues are located nearby. PCBP1-deficient cells, constructed from the human HeLa S3 line using the CRISPR-Cas9 system, exhibited higher survival rates than HeLa S3 cells when small doses of hydrogen peroxide were applied. The levels of caspase-3 activation and PARP-1 cleavage in the PCBP1-deficient cells were significantly lower than those in wild-type cells. The structure-function relationship of PCBP1 was established with the use of PCBP1 mutant proteins in which the conserved KH domains were defective. Human cells appear to possess two distinct mechanisms, one controlled by AUF1 and the other by PCBP1, with the former functioning when messenger RNA is moderately oxidized and the latter operating when the RNA is more severely damaged.


Assuntos
Apoptose/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , RNA Mensageiro/metabolismo , Substituição de Aminoácidos , Sistemas CRISPR-Cas , Caspase 3/fisiologia , Sequência Conservada , Proteínas de Ligação a DNA , Guanina/análogos & derivados , Guanina/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução , Domínios Proteicos , RNA Mensageiro/química , Proteínas de Ligação a RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
7.
Biochemistry ; 59(50): 4766-4774, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33284593

RESUMO

Polypyrimidine tract binding protein 1 (PTBP1) is a well-studied RNA binding protein that serves as an important model for understanding molecular mechanisms underlying alternative splicing regulation. PTBP1 has four RNA binding domains (RBDs) connected via linker regions. Additionally, PTBP1 has an N-terminal unstructured region that contains nuclear import and export sequences. Each RBD can bind to pyrimidine rich elements with high affinity to mediate splicing activity. Studies support a variety of models for how PTBP1 can mediate splicing regulation on target exons. Obtaining a detailed atomic view hinges on determining a crystal structure of PTBP1 bound to a target RNA transcript. Here, we created a minimal functional PTBP1 with deletions in both linker 1 and linker 2 regions and assayed for activity on certain regulated exons, including the c-Src N1 exon. We show that for a subset of PTBP1-regulated exons the linker regions are not necessary for splicing repression activity. Gel mobility shift assays reveal the linker deletion mutant binds with 12-fold higher affinity to a target RNA sequence compared to wild-type PTBP1. A minimal PTBP1 that also contains an N-terminal region deletion binds to a target RNA with an affinity higher than that of wild-type PTBP1. Moreover, this minimal protein oligomerizes readily to form a distinct higher-order complex previously shown to be required for mediating splicing repression. This minimal functional PTBP1 protein can serve as a candidate for future structure studies to understand the mechanism of splicing repression for certain regulated exons.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/genética , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Éxons , Genes src , Ribonucleoproteínas Nucleares Heterogêneas/genética , Técnicas In Vitro , Camundongos , Modelos Moleculares , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Domínios Proteicos , RNA/genética , RNA/metabolismo , Sítios de Splice de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência
8.
Biochem Biophys Res Commun ; 522(4): 826-831, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31791586

RESUMO

It has remained a mystery why cells maintain ATP concentrations of 2-12 mM, much higher than required for its known functions, until ATP is decoded to act as a hydrotrope to non-specifically control protein homeostasis above 5 mM. Unexpectedly, our NMR studies further reveal that by specific binding, ATP also mediates liquid-liquid phase separation in a two-stage style and inhibits fibrillation of RRM domains of FUS and TDP-43, implying that ATP might have a second category of functions previously unknown. So can ATP also bind nucleic-acid-binding proteins without RRM fold? Here we characterized the interaction between ATP and SYNCRIP acidic domain (AcD), a non-canonical RNA-binding domain with no similarity to RRM fold in sequence and structure. The results reveal that ATP does bind AcD at physiologically-relevant concentrations with the affinity determinants generally underlying protein-nucleic acid interactions. Therefore, at concentrations above mM, ATP might bind most, if not all, nucleic-acid-binding proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
9.
Nat Methods ; 14(5): 487-490, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28346450

RESUMO

Ribonucleoproteins (RNPs) are key regulators of cellular function. We established an efficient approach, crosslinking of segmentally isotope-labeled RNA and tandem mass spectrometry (CLIR-MS/MS), to localize protein-RNA interactions simultaneously at amino acid and nucleotide resolution. The approach was tested on polypyrimidine tract binding protein 1 and U1 small nuclear RNP. Our method provides distance restraints to support integrative atomic-scale structural modeling and to gain mechanistic insights into RNP-regulated processes.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Modelos Moleculares , Conformação de Ácido Nucleico , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , RNA/química , Ribonucleoproteína Nuclear Pequena U1/química , Sítios de Ligação , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão , Ribonucleoproteínas Nucleares Heterogêneas/genética , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica , Ribonucleoproteína Nuclear Pequena U1/genética , Software , Espectrometria de Massas em Tandem , Raios Ultravioleta
10.
Bioinformatics ; 34(23): 3961-3965, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912332

RESUMO

Motivation: The direct ancestor of the DNA-protein world of today is considered to have been an RNA-peptide world, in which peptides were co-factors of RNA-mediated catalysis and replication. Evidence for these ancestral peptides, from which folded proteins evolved, can be derived even today from regions of local sequence similarity within globally dissimilar folds. One of these is the 45-residue motif common to both folds of the hnRNP K homology (KH) domain. Results: In a survey of KH domains, we found a third fold that contains the KH motif at its core. This corresponds to the Small Domain of bacterial Ribonucleases G/E and, like type I and type II KH domains, it cannot be related to the others by a single genetic event, providing further support for the KH motif as an ancestral peptide predating folded proteins. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Peptídeos/química , Domínios Proteicos , RNA/química , Sequência de Aminoácidos , Dobramento de Proteína
11.
Nucleic Acids Res ; 45(10): 6037-6050, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334819

RESUMO

RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the ß-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM-ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process.


Assuntos
Processamento Alternativo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Termodinâmica , Motivos de Aminoácidos , Calorimetria/métodos , Eletrólitos , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , RNA/química , Proteínas de Ligação a RNA/química , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/metabolismo , Especificidade por Substrato , Temperatura , Água
12.
Nucleic Acids Res ; 45(12): 7494-7506, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28575276

RESUMO

The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species after RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.


Assuntos
Citidina Desaminase/química , DNA/química , Ribonucleoproteínas Nucleares Heterogêneas/química , Antígenos de Histocompatibilidade Menor/química , RNA Mensageiro/química , Triptofano/química , Motivos de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Especificidade por Substrato , Triptofano/metabolismo
13.
J Biol Chem ; 292(29): 12285-12295, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28611064

RESUMO

Increasing evidence indicates that alternative processing of mRNA, including alternative splicing, 3' alternative polyadenylation, and regulation of mRNA stability/translation, represents a major mechanism contributing to protein diversification. For example, in alternative polyadenylation, the 3' end of the immunoglobulin heavy chain mRNA is processed during B cell differentiation, and this processing involves RNA-binding proteins. hnRNPLL (heterogeneous nuclear ribonucleoprotein L-like protein) is an RNA-binding protein expressed in terminally differentiated lymphocytes, such as memory T cells and plasma cells. hnRNPLL regulates various processes of RNA metabolism, including alternative pre-mRNA splicing and RNA stability. In plasma cells, hnRNPLL also regulates the transition from the membrane isoform of the immunoglobulin heavy-chain (mIgH) to the secreted isoform (sIgH), but the precise mechanism remains to be identified. In this study, we report that hnRNPLL specifically associates with cytoplasmic PABPC1 (poly(A)-binding protein 1) in both T cells and plasma cells. We found that although PABPC1 is not required for the alternative splicing of CD45, a primary target of hnRNPLL in lymphocytes, PABPC1 does promote the binding of hnRNPLL to the immunoglobulin mRNA and regulates switching from mIgH to sIgH in plasma cells. Given the recently identified role of PABPC1 in mRNA alternative polyadenylation, our findings suggest that PABPC1 recruits hnRNPLL to the 3'-end of RNA and regulates the transition from membrane Ig to secreted Ig through mRNA alternative polyadenylation. In conclusion, our study has revealed a mechanism that regulates immunoglobulin secretion in B cells via cooperation between a plasma cell-specific RBP (hnRNPLL) and a universally expressed RBP (PABPC1).


Assuntos
Citoplasma/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Plasmócitos/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Poliadenilação , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/genética , Imunoprecipitação , Células Jurkat , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/citologia , Plasmócitos/imunologia , Proteína I de Ligação a Poli(A)/antagonistas & inibidores , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/genética , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Baço/citologia , Baço/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
J Biol Chem ; 292(31): 12764-12771, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28615454

RESUMO

Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells.


Assuntos
Citosol/metabolismo , Ferritinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Animais , Apoenzimas/química , Apoenzimas/metabolismo , Apoferritinas/química , Apoferritinas/metabolismo , Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação a DNA , Dimerização , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Ferritinas/química , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Ferro-Enxofre/química , Chaperonas Moleculares/química , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas/química , Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
15.
J Am Chem Soc ; 140(37): 11661-11673, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30122033

RESUMO

Members of the heterogeneous nuclear ribonucleoprotein (hnRNP) F/H family are multipurpose RNA binding proteins that participate in most stages of RNA metabolism. Despite having similar RNA sequence preferences, hnRNP F/H proteins function in overlapping and, in some cases, distinct cellular processes. The domain organization of hnRNP F/H proteins is modular, consisting of N-terminal tandem quasi-RNA recognition motifs (F/HqRRM1,2) and a third C-terminal qRRM3 embedded between glycine-rich repeats. The tandem qRRMs are connected through a 10-residue linker, with several amino acids strictly conserved between hnRNP H and F. A significant difference occurs at position 105 of the linker, where hnRNP H contains a proline and hnRNP F an alanine. To investigate the influence of P105 on the conformational properties of hnRNP H, we probed the structural dynamics of its HqRRM1,2 domain with X-ray crystallography, NMR spectroscopy, and small-angle X-ray scattering. The collective results best describe that HqRRM1,2 exists in a conformational equilibrium between compact and extended structures. The compact structure displays an electropositive surface formed at the qRRM1-qRRM2 interface. Comparison of NMR relaxation parameters, including Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, between HqRRM1,2 and FqRRM1,2 indicates that FqRRM1,2 primarily adopts a more extended and flexible conformation. Introducing the P105A mutation into HqRRM1,2 alters its conformational dynamics to favor an extended structure. Thus, our work demonstrates that the linker compositions confer different structural properties between hnRNP F/H family members that might contribute to their functional diversity.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Motivo de Reconhecimento de RNA , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/isolamento & purificação , Humanos , Modelos Moleculares , Conformação Proteica
16.
Genes Cells ; 22(9): 785-798, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28695676

RESUMO

Matrin3 is an RNA-binding protein that is localized in the nuclear matrix. Although various roles in RNA metabolism have been reported for Matrin3, in vivo target RNAs to which Matrin3 binds directly have not been investigated comprehensively so far. Here, we show that Matrin3 binds predominantly to intronic regions of pre-mRNAs. Photoactivatable Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation (PAR-CLIP) analysis using human neuronal cells showed that Matrin3 recognized pyrimidine-rich sequences as binding motifs, including the polypyrimidine tract, a splicing regulatory element. Splicing-sensitive microarray analysis showed that depletion of Matrin3 preferentially increased the inclusion of cassette exons that were adjacent to introns that contained Matrin3-binding sites. We further found that although most of the genes targeted by polypyrimidine tract binding protein 1 (PTBP1) were also bound by Matrin3, Matrin3 could control alternative splicing in a PTBP1-independent manner, at least in part. These findings suggest that Matrin3 is a splicing regulator that targets intronic pyrimidine-rich sequences.


Assuntos
Processamento Alternativo , Íntrons , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Associadas à Matriz Nuclear/genética , Motivos de Nucleotídeos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ligação Proteica , Pirimidinas/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
17.
Nucleic Acids Res ; 44(3): 1354-69, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26657640

RESUMO

Proteomic and RNomic approaches have identified many components of different ribonucleoprotein particles (RNPs), yet still little is known about the organization and protein proximities within these heterogeneous and highly dynamic complexes. Here we describe a targeted cross-linking approach, which combines cross-linking from a known anchor site with affinity purification and mass spectrometry (MS) to identify the changing vicinity interactomes along RNP maturation pathways. Our method confines the reaction radius of a heterobifunctional cross-linker to a specific interaction surface, increasing the probability to capture low abundance conformations and transient vicinal interactors too infrequent for identification by traditional cross-linking-MS approaches, and determine protein proximities within RNPs. Applying the method to two conserved RNA-associated complexes in Saccharomyces cerevisae, the mRNA export receptor Mex67:Mtr2 and the pre-ribosomal Nop7 subcomplex, we identified dynamic vicinal interactomes within those complexes and along their changing pathway milieu. Our results therefore show that this method provides a new tool to study the changing spatial organization of heterogeneous dynamic RNP complexes.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Ribonucleoproteínas Nucleares Heterogêneas/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Proteoma/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química
18.
Proc Natl Acad Sci U S A ; 112(18): 5791-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902538

RESUMO

Activation-induced cytidine deaminase (AID) is essential for antibody class switch recombination (CSR) and somatic hypermutation (SHM). AID originally was postulated to function as an RNA-editing enzyme, based on its strong homology with apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC1), the enzyme that edits apolipoprotein B-100 mRNA in the presence of the APOBEC cofactor APOBEC1 complementation factor/APOBEC complementation factor (A1CF/ACF). Because A1CF is structurally similar to heterogeneous nuclear ribonucleoproteins (hnRNPs), we investigated the involvement of several well-known hnRNPs in AID function by using siRNA knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated disruption. We found that hnRNP K deficiency inhibited DNA cleavage and thereby induced both CSR and SHM, whereas hnRNP L deficiency inhibited only CSR and somewhat enhanced SHM. Interestingly, both hnRNPs exhibited RNA-dependent interactions with AID, and mutant forms of these proteins containing deletions in the RNA-recognition motif failed to rescue CSR. Thus, our study suggests that hnRNP K and hnRNP L may serve as A1CF-like cofactors in AID-mediated CSR and SHM.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , DNA/química , Ribonucleoproteínas Nucleares Heterogêneas/química , Proteínas de Ligação a RNA/metabolismo , Desaminase APOBEC-1 , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Teste de Complementação Genética , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/química , Humanos , Imunoglobulina A/química , Switching de Imunoglobulina , Cadeias Pesadas de Imunoglobulinas/química , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Hipermutação Somática de Imunoglobulina
19.
Chembiochem ; 18(20): 2033-2044, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28805284

RESUMO

The human genome contains GC-rich sequences able to form tetraplex secondary structures known as the G-quadruplex and i-motif. Such sequences are notably present in the promoter region of oncogenes and are proposed to function as regulatory elements of gene expression. The P1 promoter of BCL2 contains a 39-mer C-rich sequence (Py39wt) that can fold into a hairpin or an i-motif in a pH-dependent manner in vitro. The protein hnRNP LL was identified to recognise the i-motif over the hairpin conformation and act as an activating transcription factor. Thus, the Py39wt sequence would act as an ON/OFF switch, according to the secondary structure adopted. Herein, a structural study of the interaction between hnRNP LL and Py39wt is reported. Both N-terminal RNA recognition motifs (RRM12) cooperatively recognise one Py39wt DNA sequence and engage their ß-sheet to form a large binding platform. In contrast, the C-terminal RRMs show no binding capacity. It is observed that RRM12 binds to Py39wt regardless of the DNA conformation. We propose that RRM12 recognises a single-stranded CTCCC element present in loop 1 of the i-motif and in the apical loop of the hairpin conformation.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
20.
J Am Chem Soc ; 138(34): 10950-62, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27483029

RESUMO

The recently discovered role of the BCL2 (B-cell lymphoma 2 gene) promoter i-motif DNA in modulation of gene expression via interaction with the ribonucleoprotein hnRNP L-like (hnRNP LL) has prompted a more detailed study of the nature of this protein-DNA interaction. The RNA recognition motifs (RRMs) of hnRNP LL were expressed individually, and both RRM1 and RRM2 were found to bind efficiently to the BCL2 i-motif DNA, as well as being critical for transcriptional activation, whereas RRM3-4 bound only weakly to this DNA. Binding was followed by unfolding of the DNA as monitored by changes in the CD spectrum. Mutational analysis of the i-motif DNA revealed that binding involved primarily the lateral loops of the i-motif. The kinetics of binding of the DNA with RRM1 was explored by recording CD spectra at predetermined times following admixture of the protein and DNA. The change in molar ellipticity was readily apparent after 30 s and largely complete within 1 min. A more detailed view of protein-DNA interaction was obtained by introducing the fluorescence donor 6-CNTrp in RRM1 at position 137, and the acceptor 4-aminobenzo[g]quinazoline-2-one (Cf) in lieu of cytidine22 in the i-motif DNA. The course of binding of the two species was monitored by FRET, which reflected a steady increase in energy transfer over a period of several minutes. The FRET signal could be diminished by the further addition of (unlabeled) RRM2, no doubt reflecting competition for binding to the i-motif DNA. These experiments using the individual RRM domains from hnRNP LL confirm the role of this transcription factor in activation of BCL2 transcription via the i-motif in the promoter element.


Assuntos
DNA/genética , DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sequência de Bases , DNA/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA