Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.019
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 149(24): 1875-1884, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38587557

RESUMO

BACKGROUND: Renal denervation (RDN) has demonstrated clinically relevant reductions in blood pressure (BP) among individuals with uncontrolled hypertension despite lifestyle intervention and medications. The safety and effectiveness of alcohol-mediated RDN have not been formally studied in this indication. METHODS: TARGET BP I is a prospective, international, sham-controlled, randomized, patient- and assessor-blinded trial investigating the safety and efficacy of alcohol-mediated RDN. Patients with office systolic BP (SBP) ≥150 and ≤180 mm Hg, office diastolic BP ≥90 mm Hg, and mean 24-hour ambulatory SBP ≥135 and ≤170 mm Hg despite prescription of 2 to 5 antihypertensive medications were enrolled. The primary end point was the baseline-adjusted change in mean 24-hour ambulatory SBP 3 months after the procedure. Secondary end points included mean between-group differences in office and ambulatory BP at additional time points. RESULTS: Among 301 patients randomized 1:1 to RDN or sham control, RDN was associated with a significant reduction in 24-hour ambulatory SBP at 3 months (mean±SD, -10.0±14.2 mm Hg versus -6.8±12.1 mm Hg; treatment difference, -3.2 mm Hg [95% CI, -6.3 to 0.0]; P=0.0487). Subgroup analysis of the primary end point revealed no significant interaction across predefined subgroups. At 3 months, the mean change in office SBP was -12.7±18.3 and -9.7±17.3 mm Hg (difference, -3.0 [95% CI, -7.0 to 1.0]; P=0.173) for RDN and sham, respectively. No significant differences in ambulatory or office diastolic BP were observed. Adverse safety events through 6 months were uncommon, with one instance of accessory renal artery dissection in the RDN group (0.7%). No significant between-group differences in medication changes or patient adherence were identified. CONCLUSIONS: Alcohol-mediated RDN was associated with a modest but statistically significant reduction in 24-hour ambulatory SBP compared with sham control. No significant differences between groups in office BP or 6-month major adverse events were observed. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02910414.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Hipertensão , Rim , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Anti-Hipertensivos/uso terapêutico , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Hipertensão/cirurgia , Pressão Sanguínea/efeitos dos fármacos , Idoso , Rim/inervação , Estudos Prospectivos , Etanol/efeitos adversos , Etanol/administração & dosagem , Etanol/farmacologia , Resultado do Tratamento , Monitorização Ambulatorial da Pressão Arterial , Simpatectomia/efeitos adversos , Simpatectomia/métodos , Artéria Renal/inervação
2.
Annu Rev Physiol ; 83: 429-450, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33566672

RESUMO

Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.


Assuntos
Vias Aferentes/fisiologia , Hipertensão/fisiopatologia , Rim/inervação , Rim/fisiologia , Animais , Ablação por Cateter/métodos , Humanos , Rim/fisiopatologia
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000071

RESUMO

The Goldblatt model of hypertension (2K-1C) in rats is characterized by renal sympathetic nerve activity (rSNA). We investigated the effects of unilateral renal denervation of the clipped kidney (DNX) on sodium transporters of the unclipped kidneys and the cardiovascular, autonomic, and renal functions in 2K-1C and control (CTR) rats. The mean arterial pressure (MAP) and rSNA were evaluated in experimental groups. Kidney function and NHE3, NCC, ENaCß, and ENaCγ protein expressions were assessed. The glomerular filtration rate (GRF) and renal plasma flow were not changed by DNX, but the urinary (CTR: 0.0042 ± 0.001; 2K-1C: 0.014 ± 0.003; DNX: 0.005 ± 0.0013 mL/min/g renal tissue) and filtration fractions (CTR: 0.29 ± 0.02; 2K-1C: 0.51 ± 0.06; DNX: 0.28 ± 0.04 mL/min/g renal tissue) were normalized. The Na+/H+ exchanger (NHE3) was reduced in 2K-1C, and DNX normalized NHE3 (CTR: 100 ± 6; 2K-1C: 44 ± 14, DNX: 84 ± 13%). Conversely, the Na+/Cl- cotransporter (NCC) was increased in 2K-1C and was reduced by DNX (CTR: 94 ± 6; 2K-1C: 144 ± 8; DNX: 60 ± 15%). In conclusion, DNX in Goldblatt rats reduced blood pressure and proteinuria independently of GRF with a distinct regulation of NHE3 and NCC in unclipped kidneys.


Assuntos
Rim , Trocador 3 de Sódio-Hidrogênio , Animais , Rim/inervação , Rim/metabolismo , Ratos , Masculino , Trocador 3 de Sódio-Hidrogênio/metabolismo , Taxa de Filtração Glomerular , Denervação , Isquemia/metabolismo , Pressão Sanguínea , Ratos Wistar , Hipertensão/metabolismo , Canais Epiteliais de Sódio/metabolismo , Modelos Animais de Doenças , Trocadores de Sódio-Hidrogênio/metabolismo
4.
Kardiologiia ; 64(4): 45-53, 2024 Apr 30.
Artigo em Russo, Inglês | MEDLINE | ID: mdl-38742515

RESUMO

AIM: To compare the changes in serum concentrations of matrix metalloproteinases (MMPs) and their tissue inhibitor (TIMP) to the dynamics of blood pressure (BP) and parameters of left ventricular hypertrophy (LVH) 6 months after renal denervation (RD) in patients with resistant arterial hypertension (RAH) and complicated coronary atherosclerosis. MATERIAL AND METHODS: In 22 RAH patients with complicated coronary atherosclerosis (revascularization and/or history of myocardial infarction (MI)), 24-hour BP monitoring, echocardiography, and measurement of blood MMPs and TIMP were performed at baseline and six months after RD. The comparison group consisted of 48 RAH patients without a history of coronary revascularization or MI. RESULTS: In 6 months after RD, BP was decreased comparably in both groups. In the group of complicated atherosclerosis, there were no significant changes in profibrotic markers or LVH parameters. Thus, at baseline and after 6 months, the values of the studied indicators were the following: left ventricular myocardial mass (LVMM) 233.1±48.1 and 243.0±52.0 g, LVMM index 60.6±14.5 and 62.8±10 .9 g/m2.7, proMMP-1 4.9 [2.1; 7.7] and 3.6 [2.0; 9.4]  ng/ml, MMP-2 290.4 [233.1; 352.5] and 352.2 [277.4; 402.9] ng/ml, MMP-9 220.6 [126.9; 476.7] and 263.5 [82.9; 726.2] ng/ml, TIMP-1 395.7 [124.7; 591.4] and 424.2 [118.2; 572.0] ng/ml, respectively. In the comparison group, on the contrary, there was a significant decrease in LVMM from 273.6±83.3 g to 254.1±70.4 g, LVMM index from 67.1±12.3 to 64.0±14.4 g/m2.7, proMMP-1 from 7.2 [3.6; 11.7] to 5.9 [3.5; 10.9] ng/ml, MMP-2 from 328.9 [257.1; 378.1] to 272.8 [230.2; 343.2] ng/ml, MMP-9 from 277.9 [137.0; 524.0] to 85.5 [34.2; 225.9] ng/ml, and the MMP-9/TIMP-1 ratio from 0.80 [0.31; 1.30] to 0.24 [0.07; 0.76]. The BP dynamics in this group was inversely correlated with MMP-2 at 6 months (r=-0.38), and the MMP-9/TIMP-1 ratio was correlated with LVMM and the LVMM index at baseline (r=0.39 and r=0.39) and at 6 months (r=0.37 and r=0.32). The change in TIMP-1 from 543.9 [277.5; 674.1] to 469.8 [289.7; 643.6] ng/ml was not significant (p=0.060). CONCLUSION: In RAH patients with complicated coronary atherosclerosis, the dynamics of profibrotic biomarkers and LVH parameters after RD was absent despite the pronounced antihypertensive effect, probably due to the low reversibility of cardiovascular remodeling processes or more complex regulatory mechanisms of the MMP system.


Assuntos
Biomarcadores , Hipertensão , Hipertrofia Ventricular Esquerda , Humanos , Masculino , Feminino , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/etiologia , Pessoa de Meia-Idade , Hipertensão/fisiopatologia , Hipertensão/cirurgia , Hipertensão/complicações , Biomarcadores/sangue , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/complicações , Ecocardiografia/métodos , Idoso , Rim/inervação , Pressão Sanguínea/fisiologia , Metaloproteinases da Matriz/sangue , Simpatectomia/métodos
5.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R497-R512, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779670

RESUMO

Stimulation of the mesencephalic locomotor region elicits exaggerated sympathetic nerve and pressor responses in spontaneously hypertensive rats (SHR) as compared with normotensive Wistar-Kyoto rats (WKY). This suggests that central command or its influence on vasomotor centers is augmented in hypertension. The decerebrate animal model possesses an ability to evoke intermittent bouts of spontaneously occurring motor activity (SpMA) and generates cardiovascular responses associated with the SpMA. It remains unknown whether the changes in sympathetic nerve activity and hemodynamics during SpMA are altered by hypertension. To test the hypothesis that the responses in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) during SpMA are exaggerated with hypertension, this study aimed to compare the responses in decerebrate, paralyzed SHR, WKY, and normotensive Sprague-Dawley (SD) rats. In all strains, an abrupt increase in RSNA occurred in synchronization with tibial motor discharge (an index of motor activity) and was followed by rises in MAP and heart rate. The centrally evoked increase in RSNA and MAP during SpMA was much greater (306 ± 110%) in SHR than WKY (187 ± 146%) and SD (165 ± 44%). Although resting baroreflex-mediated changes in RSNA were not different across strains, mechanically or pharmacologically induced elevations in MAP attenuated or abolished the RSNA increase during SpMA in WKY and SD but had no effect in SHR. It is likely that the exaggerated sympathetic nerve and pressor responses during SpMA in SHR are induced along a central command pathway independent of the arterial baroreflex and/or result from central command-induced inhibition of the baroreflex.


Assuntos
Pressão Sanguínea , Hipertensão , Rim , Atividade Motora , Sistema Nervoso Simpático , Sistema Nervoso Simpático/fisiopatologia , Rim/inervação , Rim/fisiopatologia , Animais , Ratos , Hipertensão/fisiopatologia , Vasoconstrição , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Artérias , Ratos Sprague-Dawley , Frequência Cardíaca , Barorreflexo
6.
Circ Res ; 128(7): 1080-1099, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793330

RESUMO

In the past decade, efforts to improve blood pressure control have looked beyond conventional approaches of lifestyle modification and drug therapy to embrace interventional therapies. Based upon animal and human studies clearly demonstrating a key role for the sympathetic nervous system in the etiology of hypertension, the newer technologies that have emerged are predominantly aimed at neuromodulation of peripheral nervous system targets. These include renal denervation, baroreflex activation therapy, endovascular baroreflex amplification therapy, carotid body ablation, and pacemaker-mediated programmable hypertension control. Of these, renal denervation is the most mature, and with a recent series of proof-of-concept trials demonstrating the safety and efficacy of radiofrequency and more recently ultrasound-based renal denervation, this technology is poised to become available as a viable treatment option for hypertension in the foreseeable future. With regard to baroreflex activation therapy, endovascular baroreflex amplification, carotid body ablation, and programmable hypertension control, these are developing technologies for which more human data are required. Importantly, central nervous system control of the circulation remains a poorly understood yet vital component of the hypertension pathway and mandates further investigation. Technology to improve blood pressure control through deep brain stimulation of key cardiovascular control territories is, therefore, of interest. Furthermore, alternative nonsympathomodulatory intervention targeting the hemodynamics of the circulation may also be worth exploring for patients in whom sympathetic drive is less relevant to hypertension perpetuation. Herein, we review the aforementioned technologies with an emphasis on the preclinical data that underpin their rationale and the human evidence that supports their use.


Assuntos
Hipertensão/terapia , Animais , Derivação Arteriovenosa Cirúrgica/métodos , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Corpo Carotídeo/cirurgia , Estimulação Encefálica Profunda/métodos , Denervação/métodos , Humanos , Hipertensão/etiologia , Rim/inervação , Marca-Passo Artificial , Sistema Nervoso Simpático/fisiologia , Estimulação Elétrica Nervosa Transcutânea
7.
JAMA ; 329(8): 651-661, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853250

RESUMO

Importance: Two initial sham-controlled trials demonstrated that ultrasound renal denervation decreases blood pressure (BP) in patients with mild to moderate hypertension and hypertension that is resistant to treatment. Objective: To study the efficacy and safety of ultrasound renal denervation without the confounding influence of antihypertensive medications in patients with hypertension. Design, Setting, and Participants: Sham-controlled, randomized clinical trial with patients and outcome assessors blinded to treatment assignment that was conducted between January 14, 2019, and March 25, 2022, at 37 centers in the US and 24 centers in Europe, with randomization stratified by center. Patients aged 18 years to 75 years with hypertension (seated office systolic BP [SBP] ≥140 mm Hg and diastolic BP [DBP] ≥90 mm Hg despite taking up to 2 antihypertensive medications) were eligible if they had an ambulatory SBP/DBP of 135/85 mm Hg or greater and an SBP/DBP less than 170/105 mm Hg after a 4-week washout of their medications. Patients with an estimated glomerular filtration rate of 40 mL/min/1.73 m2 or greater and with suitable renal artery anatomy were randomized 2:1 to undergo ultrasound renal denervation or a sham procedure. Patients were to abstain from antihypertensive medications until the 2-month follow-up unless prespecified BP criteria were exceeded and were associated with clinical symptoms. Interventions: Ultrasound renal denervation vs a sham procedure. Main Outcomes and Measures: The primary efficacy outcome was the mean change in daytime ambulatory SBP at 2 months. The primary safety composite outcome of major adverse events included death, kidney failure, and major embolic, vascular, cardiovascular, cerebrovascular, and hypertensive events at 30 days and renal artery stenosis greater than 70% detected at 6 months. The secondary outcomes included mean change in 24-hour ambulatory SBP, home SBP, office SBP, and all DBP parameters at 2 months. Results: Among 1038 eligible patients, 150 were randomized to ultrasound renal denervation and 74 to a sham procedure (mean age, 55 years [SD, 9.3 years]; 28.6% female; and 16.1% self-identified as Black or African American). The reduction in daytime ambulatory SBP was greater with ultrasound renal denervation (mean, -7.9 mm Hg [SD, 11.6 mm Hg]) vs the sham procedure (mean, -1.8 mm Hg [SD, 9.5 mm Hg]) (baseline-adjusted between-group difference, -6.3 mm Hg [95% CI, -9.3 to -3.2 mm Hg], P < .001), with a consistent effect of ultrasound renal denervation throughout the 24-hour circadian cycle. Among 7 secondary BP outcomes, 6 were significantly improved with ultrasound renal denervation vs the sham procedure. No major adverse events were reported in either group. Conclusions and Relevance: In patients with hypertension, ultrasound renal denervation reduced daytime ambulatory SBP at 2 months in the absence of antihypertensive medications vs a sham procedure without postprocedural major adverse events. Trial Registration: ClinicalTrials.gov Identifier: NCT03614260.


Assuntos
Denervação , Hipertensão , Ultrassonografia de Intervenção , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anti-Hipertensivos/uso terapêutico , Denervação/métodos , Procedimentos Endovasculares , Hipertensão/cirurgia , Rim/diagnóstico por imagem , Rim/inervação , Ultrassonografia de Intervenção/métodos , Procedimentos Cirúrgicos Vasculares , Método Simples-Cego
8.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047183

RESUMO

Enhanced renal sympathetic nerve activity (RSNA) contributes to obesity-induced renal disease, while the role of afferent renal nerve activity (ARNA) is not fully understood. The present study tested the hypothesis that activating the transient receptor potential vanilloid 1 (TRPV1) channel in afferent renal nerves suppresses RSNA and prevents renal dysfunction and hypertension in obese rats. N-oleoyldopamine (OLDA, 1 ng/kg, daily) was administrated intrathecally (T8-L3) via an indwelled catheter to chronically activate, TRPV1-positive afferent renal nerves in rats fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD intake significantly increased the body weight, impaired glucose and insulin tolerance, decreased creatinine clearance, and elevated systolic blood pressure in rats compared with the levels of the chow-fed rats (all p < 0.05). An intrathecal OLDA treatment for 8 weeks did not affect the fasting glucose level, glucose tolerance, and insulin tolerance in rats fed either chow or HFD. As expected, the chronic OLDA treatment significantly increased the levels of plasma calcitonin gene-related peptide and substance P and ARNA in the HFD-fed rats (all p < 0.05). Interestingly, the OLDA treatment decreased the urinary norepinephrine level and RSNA in rats fed HFD (both p < 0.05). Importantly, the OLDA treatment attenuated HFD-induced decreases in creatinine clearance and urinary Na+ excretion and increases in the plasma urea level, urinary albumin level, and systolic blood pressure at the end of an 8-week treatment (all p < 0.05). Taken together, the intrathecal administration of OLDA ameliorates the enhancement of RSNA, renal dysfunction, and hypertension in obese rats. These findings shed light on the roles of TRPV1-positive renal afferent nerves in obesity-related renal dysfunction and hypertension.


Assuntos
Hipertensão , Insulinas , Nefropatias , Animais , Ratos , Creatinina , Dieta Hiperlipídica , Glucose , Hipertensão/prevenção & controle , Rim/fisiologia , Rim/inervação , Obesidade/tratamento farmacológico , Obesidade/etiologia , Canais de Cátion TRPV/genética
9.
Am J Physiol Heart Circ Physiol ; 323(3): H437-H448, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35867707

RESUMO

The circadian cycle impacts sympathetic nerve activity (SNA), cardiovascular hemodynamics, and renal function. Activation of renal sensory nerves by chemosensory and mechanosensory stimuli reflexively changes efferent SNA and arterial blood pressure (ABP) to maintain homeostasis. However, it is unclear to what extent circadian cycle influences reflex SNA and ABP responses to renal sensory stimuli. Renal, splanchnic, and lumbar SNA and ABP responses to intrarenal arterial infusion of bradykinin or capsaicin and elevated renal pelvic pressure were measured in male and female Sprague-Dawley rats during nighttime (wakeful/active phase) and daytime (inactive phase). Intrarenal arterial bradykinin infusion significantly increased efferent renal SNA, splanchnic SNA, and ABP but not lumbar SNA. Responses were greater during nighttime versus daytime. Similarly, intrarenal arterial capsaicin infusion significantly increased renal SNA and splanchnic SNA, and responses were again greater during nighttime. Elevated renal pelvic pressure increased renal SNA and splanchnic SNA; however, responses did not differ between daytime and nighttime. Finally, afferent renal nerve activity responses to bradykinin were not different between daytime and nighttime. Thus, renal chemokines elicit greater sympathoexcitatory responses at nighttime that cannot be attributed to differences in afferent renal nerve activity. Collectively, these data suggest that the circadian cycle alters the excitability of central autonomic networks to alter baseline SNA and ABP as well as the magnitude of visceral reflexes.NEW & NOTEWORTHY The current study discovers that the circadian cycle influences sympathetic and hemodynamic responses to activation of renal chemosensitive sensory fibers. Sympathetic responses to intrarenal bradykinin or capsaicin infusion were exaggerated during nighttime (active period), but mechanosensitive responses to elevated renal pelvic pressure were not. Importantly, renal afferent nerve responses were not different between nighttime and daytime. These data suggest that the circadian cycle modulates sympathetic responses to visceral afferent activation.


Assuntos
Bradicinina , Capsaicina , Animais , Pressão Sanguínea/fisiologia , Bradicinina/farmacologia , Capsaicina/farmacologia , Feminino , Rim/inervação , Rim/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia
10.
Basic Res Cardiol ; 117(1): 36, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834066

RESUMO

Atrial fibrillation (AF) is highly prevalent in hypertensive patients with metabolic syndrome and is related to inflammation and activation of the sympathoadrenergic system. The multi-ligand Receptor-for-Advanced-Glycation-End-products (RAGE) activates inflammation-associated tissue remodeling and is regulated by the sympathetic nervous system. Its counterpart, soluble RAGE (sRAGE), serves as anti-inflammatory decoy receptor with protective properties. We investigated the effect of sympathetic modulation by renal denervation (RDN) on atrial remodeling, RAGE/sRAGE and RAGE ligands in metabolic syndrome. RDN was performed in spontaneously hypertensive obese rats (SHRob) with metabolic syndrome compared with lean spontaneously hypertensive rats (SHR) and with normotensive non-obese control rats. Blood pressure and heart rate were measured by telemetry. The animals were killed 12 weeks after RDN. Left atrial (LA) and right atrial (RA) remodeling was assessed by histological analysis and collagen types. Sympathetic innervation was measured by tyrosine hydroxylase staining of atrial nerve fibers, RAGE/sRAGE, RAGE ligands, cytokine expressions and inflammatory infiltrates were analyzed by Western blot and immunofluorescence staining. LA sympathetic nerve fiber density was higher in SHRob (+44%) versus controls and reduced after RDN (-64% versus SHRob). RAGE was increased (+718%) and sRAGE decreased (- 62%) in SHRob as compared with controls. RDN reduced RAGE expression (- 61% versus SHRob), significantly increased sRAGE levels (+162%) and induced a significant decrease in RAGE ligand levels in SHRob (- 57% CML and - 51% HMGB1) with reduced pro-inflammatory NFkB activation (- 96%), IL-6 production (- 55%) and reduced inflammatory infiltrates. This led to a reduction in atrial fibrosis (- 33%), collagen type I content (- 72%), accompanied by reduced LA myocyte hypertrophy (- 21%). Transfection experiments on H9C2 cardiomyoblasts demonstrated that RAGE is directly involved in fibrosis formation by influencing cellular production of collagen type I. In conclusion, suppression of renal sympathetic nerve activity by RDN prevents atrial remodeling in metabolic syndrome by reducing atrial sympathetic innervation and by modulating RAGE/sRAGE balance and reducing pro-inflammatory and pro-fibrotic RAGE ligands, which provides a potential therapeutic mechanism to reduce the development of AF.


Assuntos
Remodelamento Atrial , Denervação , Hipertensão , Rim , Síndrome Metabólica , Receptor para Produtos Finais de Glicação Avançada , Animais , Fibrilação Atrial/metabolismo , Colágeno Tipo I , Denervação/métodos , Fibrose , Hipertensão/complicações , Hipertensão/metabolismo , Inflamação/metabolismo , Rim/inervação , Rim/cirurgia , Ligantes , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Obesidade/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptor para Produtos Finais de Glicação Avançada/metabolismo
11.
Diabetologia ; 64(1): 181-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052459

RESUMO

AIMS/HYPOTHESIS: Melanocortin 4 receptor (MC4R) mutation is the most common cause of known monogenic obesity in humans. Unexpectedly, humans and rodents with MC4R deficiency do not develop hyperglycaemia despite chronic obesity and insulin resistance. To explain the underlying mechanisms for this phenotype, we determined the role of MC4R in glucose homeostasis in the presence and absence of obesity in mice. METHODS: We used global and hypothalamus-specific MC4R-deficient mice to investigate the brain regions that contribute to glucose homeostasis via MC4R. We performed oral, intraperitoneal and intravenous glucose tolerance tests in MC4R-deficient mice that were either obese or weight-matched to their littermate controls to define the role of MC4R in glucose regulation independently of changes in body weight. To identify the integrative pathways through which MC4R regulates glucose homeostasis, we measured renal and adrenal sympathetic nerve activity. We also evaluated glucose homeostasis in adrenaline (epinephrine)-deficient mice to investigate the role of adrenaline in mediating the effects of MC4R in glucose homeostasis. We employed a graded [13C6]glucose infusion procedure to quantify renal glucose reabsorption in MC4R-deficient mice. Finally, we measured the levels of renal glucose transporters in hypothalamus-specific MC4R-deficient mice and adrenaline-deficient mice using western blotting to ascertain the molecular mechanisms underlying MC4R control of glucose homeostasis. RESULTS: We found that obese and weight-matched MC4R-deficient mice exhibited improved glucose tolerance due to elevated glucosuria, not enhanced beta cell function. Moreover, MC4R deficiency selectively in the paraventricular nucleus of the hypothalamus (PVH) is responsible for reducing the renal threshold for glucose as measured by graded [13C6]glucose infusion technique. The MC4R deficiency suppressed renal sympathetic nerve activity by 50% in addition to decreasing circulating adrenaline and renal GLUT2 levels in mice, which contributed to the elevated glucosuria. We further report that adrenaline-deficient mice recapitulated the increased excretion of glucose in urine observed in the MC4R-deficient mice. Restoration of circulating adrenaline in both the MC4R- and adrenaline-deficient mice reversed their phenotype of improved glucose tolerance and elevated glucosuria, demonstrating the role of adrenaline in mediating the effects of MC4R on glucose reabsorption. CONCLUSIONS/INTERPRETATION: These findings define a previously unrecognised function of hypothalamic MC4R in glucose reabsorption mediated by adrenaline and renal GLUT2. Taken together, our findings indicate that elevated glucosuria due to low sympathetic tone explains why MC4R deficiency does not cause hyperglycaemia despite inducing obesity and insulin resistance. Graphical abstract.


Assuntos
Hexoses/metabolismo , Homeostase/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Bases de Schiff/metabolismo , Animais , Glicemia/metabolismo , Cruzamentos Genéticos , Epinefrina/deficiência , Epinefrina/fisiologia , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/fisiologia , Glicosúria/fisiopatologia , Hipotálamo/química , Insulina/sangue , Resistência à Insulina/fisiologia , Rim/inervação , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Receptor Tipo 4 de Melanocortina/deficiência , Sistema Nervoso Simpático/fisiopatologia
12.
Pflugers Arch ; 473(10): 1617-1629, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34232378

RESUMO

Previous data suggest that renal afferent nerve activity is increased in hypertension exerting sympathoexcitatory effects. Hence, we wanted to test the hypothesis that in renovascular hypertension, the activity of dorsal root ganglion (DRG) neurons with afferent projections from the kidneys is augmented depending on the degree of intrarenal inflammation. For comparison, a nonhypertensive model of mesangioproliferative nephritis was investigated. Renovascular hypertension (2-kidney, 1-clip [2K1C]) was induced by unilateral clipping of the left renal artery and mesangioproliferative glomerulonephritis (anti-Thy1.1) by IV injection of a 1.75-mg/kg BW OX-7 antibody. Neuronal labeling (dicarbocyanine dye [DiI]) in all rats allowed identification of renal afferent dorsal root ganglion (DRG) neurons. A current clamp was used to characterize neurons as tonic (sustained action potential [AP] firing) or phasic (1-4 AP) upon stimulation by current injection. All kidneys were investigated using standard morphological techniques. DRG neurons exhibited less often tonic response if in vivo axonal input from clipped kidneys was received (30.4% vs. 61.2% control, p < 0.05). However, if the nerves to the left clipped kidneys were cut 7 days prior to investigation, the number of tonic renal neurons completely recovered to well above control levels. Interestingly, electrophysiological properties of neurons that had in vivo axons from the right non-clipped kidneys were not distinguishable from controls. Renal DRG neurons from nephritic rats also showed less often tonic activity upon current injection (43.4% vs. 64.8% control, p < 0.05). Putative sympathoexcitatory and impaired sympathoinhibitory renal afferent nerve fibers probably contribute to increased sympathetic activity in 2K1C hypertension.


Assuntos
Vias Aferentes , Glomerulonefrite/induzido quimicamente , Hipertensão Renovascular/fisiopatologia , Rim/inervação , Animais , Gânglios Espinais , Glomerulonefrite/classificação , Glomerulonefrite/patologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Pflugers Arch ; 473(4): 633-646, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786667

RESUMO

We recently showed that a substance P (SP)-dependent sympatho-inhibitory mechanism via afferent renal nerves is impaired in mesangioproliferative nephritis. Therefore, we tested the hypothesis that SP released from renal afferents inhibits the action potential (AP) production in their dorsal root ganglion (DRG) neurons. Cultured DRG neurons (Th11-L2) were investigated in current clamp mode to assess AP generation during both TRPV1 stimulation by protons (pH 6) and current injections with and without exposure to SP (0.5 µmol) or CGRP (0.5 µmol). Neurons were classified as tonic (sustained AP generation) or phasic (≤ 4 APs) upon current injection; voltage clamp experiments were performed for the investigation of TRPV1-mediated inward currents due to proton stimulation. Superfusion of renal neurons with protons and SP increased the number of action potentials in tonic neurons (9.6 ± 5 APs/10 s vs. 16.9 ± 6.1 APs/10 s, P < 0.05, mean ± SD, n = 7), while current injections with SP decreased it (15.2 ± 6 APs/600 ms vs. 10.2 ± 8 APs/600 ms, P < 0.05, mean ± SD, n = 29). Addition of SP significantly reduced acid-induced TRPV1-mediated currents in renal tonic neurons (- 518 ± 743 pA due to pH 6 superfusion vs. - 82 ± 50 pA due to pH 6 with SP superfusion). In conclusion, SP increased action potential production via a TRPV1-dependent mechanism in acid-sensitive renal neurons. On the other hand, current injection in the presence of SP led to decreased action potential production. Thus, the peptide SP modulates signaling pathways in renal neurons in an unexpected manner leading to both stimulation and inhibition of renal neuronal activity in different (e.g., acidic) environmental contexts.


Assuntos
Potenciais de Ação , Rim/inervação , Neurônios Aferentes/fisiologia , Substância P/farmacologia , Animais , Células Cultivadas , Gânglios Espinais/citologia , Rim/citologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley , Substância P/metabolismo , Canais de Cátion TRPV/metabolismo
14.
Am J Physiol Renal Physiol ; 320(1): F1-F16, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166181

RESUMO

We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.


Assuntos
Barorreflexo , Volume Sanguíneo , Diurese , Hipóxia/fisiopatologia , Rim/inervação , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Arterial , Barorreflexo/efeitos dos fármacos , Volume Sanguíneo/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Doença Crônica , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Frequência Cardíaca , Hipóxia/metabolismo , Hipóxia/patologia , Infusões Intravenosas , Rim/metabolismo , Rim/patologia , Masculino , Natriurese , Ratos Wistar , Solução Salina/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Fatores de Tempo , Urodinâmica
15.
J Neurophysiol ; 126(2): 668-679, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259043

RESUMO

Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.


Assuntos
Anestésicos Gerais/farmacologia , Hemodinâmica , Rim/inervação , Neurônios Eferentes/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Capsaicina/farmacologia , Feminino , Isoflurano/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Neurônios Eferentes/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Fatores Sexuais , Sistema Nervoso Simpático/efeitos dos fármacos , Tiopental/análogos & derivados , Tiopental/farmacologia , Tato , Uretana/farmacologia
16.
Lancet ; 395(10234): 1444-1451, 2020 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-32234534

RESUMO

BACKGROUND: Catheter-based renal denervation has significantly reduced blood pressure in previous studies. Following a positive pilot trial, the SPYRAL HTN-OFF MED (SPYRAL Pivotal) trial was designed to assess the efficacy of renal denervation in the absence of antihypertensive medications. METHODS: In this international, prospective, single-blinded, sham-controlled trial, done at 44 study sites in Australia, Austria, Canada, Germany, Greece, Ireland, Japan, the UK, and the USA, hypertensive patients with office systolic blood pressure of 150 mm Hg to less than 180 mm Hg were randomly assigned 1:1 to either a renal denervation or sham procedure. The primary efficacy endpoint was baseline-adjusted change in 24-h systolic blood pressure and the secondary efficacy endpoint was baseline-adjusted change in office systolic blood pressure from baseline to 3 months after the procedure. We used a Bayesian design with an informative prior, so the primary analysis combines evidence from the pilot and Pivotal trials. The primary efficacy and safety analyses were done in the intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT02439749. FINDINGS: From June 25, 2015, to Oct 15, 2019, 331 patients were randomly assigned to either renal denervation (n=166) or a sham procedure (n=165). The primary and secondary efficacy endpoints were met, with posterior probability of superiority more than 0·999 for both. The treatment difference between the two groups for 24-h systolic blood pressure was -3·9 mm Hg (Bayesian 95% credible interval -6·2 to -1·6) and for office systolic blood pressure the difference was -6·5 mm Hg (-9·6 to -3·5). No major device-related or procedural-related safety events occurred up to 3 months. INTERPRETATION: SPYRAL Pivotal showed the superiority of catheter-based renal denervation compared with a sham procedure to safely lower blood pressure in the absence of antihypertensive medications. FUNDING: Medtronic.


Assuntos
Hipertensão/cirurgia , Rim/inervação , Rim/cirurgia , Adulto , Anti-Hipertensivos/normas , Austrália/epidemiologia , Áustria/epidemiologia , Teorema de Bayes , Pressão Sanguínea/fisiologia , Canadá/epidemiologia , Feminino , Alemanha/epidemiologia , Grécia/epidemiologia , Humanos , Hipertensão/diagnóstico , Hipertensão/etnologia , Irlanda/epidemiologia , Japão/epidemiologia , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Placebos/efeitos adversos , Estudos Prospectivos , Simpatectomia/métodos , Resultado do Tratamento , Reino Unido/epidemiologia , Estados Unidos/epidemiologia
17.
Curr Opin Nephrol Hypertens ; 30(1): 54-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186217

RESUMO

PURPOSE OF REVIEW: Of the roughly 1.4 billion people with hypertension worldwide, only about one in seven has their blood pressure (BP) successfully treated and adequately controlled. This review will focus on new therapeutic approaches of hypertension. RECENT FINDINGS: Several recent clinical studies and guidelines have favoured the assessment of target organ damage and cardiovascular risk scores for the diagnosis and treatment approach of hypertension. Paradigm shifts recommended in the guidelines are the initiation of antihypertensive treatment with combination (not mono) therapy and the recommendation of single-pill combinations (SPC), which improve adherence and result in rapid and effective BP control. In clinical trials with optimized design and renal denervation (RDN) technology, the biological proof of concept has been established. Consistent, durable ambulatory and office BP reductions without procedure associated serious adverse events have been documented. The challenges are now to identify patients who respond best to interventional treatment. SUMMARY: Major key points in the treatment strategy for hypertension are: individualization of the therapy according to total cardiovascular risk, combination therapy as initial step, recommendation of SPC and RDN as promising interventional therapy.


Assuntos
Hipertensão/terapia , Anti-Hipertensivos/uso terapêutico , Barorreflexo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Combinação de Medicamentos , Quimioterapia Combinada , Terapia por Estimulação Elétrica , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Rim/inervação , Adesão à Medicação , Prognóstico , Medição de Risco , Simpatectomia , Resultado do Tratamento
18.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R328-R337, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231420

RESUMO

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Assuntos
Gânglios Simpáticos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Dopamina beta-Hidroxilase/metabolismo , Rim/inervação , Masculino , Camundongos , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R88-R93, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146555

RESUMO

Elevated sympathetic vasomotor activity is a common feature of cardiorenal diseases. Therefore, the sympathetic nervous system is an important therapeutic target, particularly the fibers innervating the kidneys. In fact, renal denervation has been applied clinically and shown promising results in patients with hypertension and chronic kidney disease. However, the underlying mechanisms involved in the cardiorenal protection induced by renal denervation have not yet been fully clarified. This mini-review highlights historical and recent aspects related to the role of renal sensory fibers in the control of cardiorenal function under normal conditions and in experimental models of cardiovascular disease. Results have demonstrated that alterations in renal sensory function participate in the maintenance of elevated sympathetic vasomotor activity and cardiorenal changes; as such, renal sensory fibers may be a potential therapeutic target for the treatment of cardiorenal diseases. Although it has not yet been applied in clinical practice, selective afferent renal denervation may be promising, since such an approach maintains efferent activity and can provide more refined control of renal function compared with total renal denervation. However, more studies are needed to understand the mechanisms by which renal afferents partially contribute to such changes, in addition to the need to evaluate the safety and advantages of the approach for application in the clinical practice.


Assuntos
Vias Aferentes/fisiopatologia , Síndrome Cardiorrenal/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Rim/inervação , Insuficiência Renal Crônica/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Vias Aferentes/cirurgia , Animais , Síndrome Cardiorrenal/cirurgia , Humanos , Hipertensão Renovascular/cirurgia , Insuficiência Renal Crônica/cirurgia , Simpatectomia , Sistema Nervoso Simpático/cirurgia
20.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R513-R521, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346721

RESUMO

Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Assuntos
Angiotensina I/farmacologia , Pressão Arterial/efeitos dos fármacos , Sistema Cardiovascular/inervação , Córtex Cerebral/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Rim/inervação , Proteínas do Tecido Nervoso/agonistas , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Córtex Cerebral/fisiologia , Ligantes , Masculino , Microinjeções , Proteínas do Tecido Nervoso/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA