Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.293
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720294

RESUMO

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Hypocreales/metabolismo , Rutina/farmacologia , Rutina/química , Acremonium , Gencitabina , Dissacarídeos/farmacologia , Dissacarídeos/química
2.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789868

RESUMO

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Assuntos
Apoptose , Proteínas de Transporte , Rutina , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Rutina/farmacologia
3.
Mol Biol Rep ; 51(1): 312, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374412

RESUMO

BACKGROUND: The present study is analysisof the seeds of buckwheat (Fagopyrum sp.),member of the Polygonaceae family for isolation of rutin and its anticancer property againstOsteosarcoma celllines (SAOS2). The selected plant is traditionally used for diabetes and cancer. It has several biological properties such as antibacterial, antioxidant and anti-aging. PURPOSE: Thirty-five buckwheat cultivars were obtained from Nepal Agriculture Genetic Resources Centre (NAGRC) Khumaltar, Kathmandu, Nepal, and Kumrek Sikkim. These plant varieties are scientifically evaluated their biological properties. METHODS: Rutin wasfractionated from buckwheat seeds using methanol fraction and analysed for quality by HPLC method. The rutin fraction of the cultivar NGRC03731 a tartary buck wheat and standard rutin was used against Osteosarcoma cell lines (SAOS2) and human gingival fibroblast cells (hGFs) for anticancer activity. The cell viability using rutin fraction and standard rutin treated with SAOS2 cells were assessed by MTT assay. For further research, the best doses (IC-50: 20 g/ml) were applied. By using AO/EtBr dual staining, the effects of Rutin fraction on SAOS2 cell death were analysed. The scratch wound healing assay was used to analyse cell migration. Real-time PCR was used to analyse the pro-/anti-apoptotic gene expression. RESULTS: The seeds with the highest rutin content, NGRC03731 seeds, had 433 mg/100 g of rutin.The rutin fraction treatment and standard rutin significantly reduced cell viability in the MTT assay, and osteosarcoma cells were observed on sensitive to the IC-50 dose at a concentration of 20 g/ml after 24 h.The SAOS2 cells exposed to rutin fraction at 20 g/ml and standard rutin at 10 g/ml exhibited significant morphological alterations, cell shrinkage and decreased cell density, which indicate apoptotic cells.Rutin-fraction treated cells stained with acridine orange/ethidium bromide (AO/EtBr) dual staining cells turned yellow, orange, and red which indicatesto measure apoptosis.The anti-migration potential of rutin fraction, results prevented the migration of SAOS2 cancer cells.Rutin-fraction significantly increased the expression of pro-apoptotic proteinsBad, using real-time PCR analysis (mRNA for Bcl-2 family proteins) resulted Bcl-2's expression is negatively regulated. CONCLUSION: Osteosarcoma (SAOS2) cell lines' proliferation, migration, and ability to proliferate were reduced markedly by rutin fraction and it also causes apoptosis of Osteosarcoma cell lines (SAOS2).


Assuntos
Fagopyrum , Osteossarcoma , Humanos , Rutina/farmacologia , Fagopyrum/genética , Linhagem Celular , Proteínas Proto-Oncogênicas c-bcl-2 , Osteossarcoma/tratamento farmacológico
4.
J Biochem Mol Toxicol ; 38(8): e23784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39095945

RESUMO

Acrylamide (AA) is a carcinogenic compound that affects people due to its frequent use in laboratories and industry as well as the high-temperature cooking of foods with high hydrocarbon content. AA is known to cause severe reproductive abnormalities. The main aim of this study is to evaluate the protective effect of rutin (RU), a phytoactive compound, against AA-induced reproductive toxicity in female rats. Initially, rats were exposed to AA (40 mg/kg for 10 days). Therapy of RU was given after AA intoxication consecutively for 3 days. After 24 h of the last treatment, all the animals were sacrificed. The study evaluated reproductive hormones, oxidative stress markers, membrane-bound enzymes, DNA damage, histological findings, and an in silico approach to determine the protective efficacy of RU. The results indicated that RU significantly protected against inflammation, oxidative stress, and DNA damage induced by AA, likely due to its antioxidant properties.


Assuntos
Acrilamida , Dano ao DNA , Inflamação , Estresse Oxidativo , Rutina , Animais , Rutina/farmacologia , Feminino , Estresse Oxidativo/efeitos dos fármacos , Acrilamida/toxicidade , Dano ao DNA/efeitos dos fármacos , Ratos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Ratos Wistar , Simulação por Computador , Antioxidantes/farmacologia , Antioxidantes/metabolismo
5.
Bioorg Chem ; 149: 107503, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823312

RESUMO

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Assuntos
L-Lactato Desidrogenase , Rutina , Rutina/química , Rutina/farmacologia , Rutina/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Simulação por Computador , Antineoplásicos/química , Antineoplásicos/farmacologia
6.
Ecotoxicol Environ Saf ; 274: 116195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479315

RESUMO

Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.


Assuntos
Fluoretos , Proteína HMGB1 , Nefropatias , Rutina , Animais , Ratos , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Fluoretos/metabolismo , Fluoretos/toxicidade , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Lisossomos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Rutina/farmacologia , Fluoreto de Sódio/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo
7.
Phytother Res ; 38(7): 3401-3416, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666397

RESUMO

Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.


Assuntos
Ferroptose , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Rutina , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Ferroptose/efeitos dos fármacos , Rutina/farmacologia , Camundongos , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Malondialdeído/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo
8.
Reprod Domest Anim ; 59(2): e14540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404048

RESUMO

This article reviews the source and properties of rutin (vitamin P), its general physiological and medicinal effects and their mechanisms, but the main subject of it is the currently available knowledge concerning the character and mechanisms of action of rutin on female reproductive processes. The available data demonstrate the stimulatory action of rutin on female reproductive processes: it can promote ovarian follicles development and ovulation, ovarian cyclicity, and viability of ovarian cells. On the other hand, it can suppress ovarian cancer cell and tumour development by inhibition of cell proliferation and growth and activation of their apoptosis and death. Furthermore, it could be able to prevent other reproductive disorders (ischaemia, polycystic ovarian syndrome, toxic effects of chemotherapy, nanoparticles and toluene). Rutin could exert its effects via changes in the release and reception of gonadotropin, ovarian steroid hormones, prostaglandins, cytokines, VEGF, as well as in intracellular regulators and markers of oxidative and inflammatory processes, proliferation, apoptosis and angiogenesis.


Assuntos
Ovário , Rutina , Feminino , Animais , Rutina/farmacologia , Ovário/fisiologia , Genitália Feminina , Hormônios , Reprodução
9.
ScientificWorldJournal ; 2024: 9063936, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371227

RESUMO

Objectives: Flavonoids comprise a huge class of phenolic compounds widely distributed throughout the plant kingdom. Although quercetin and rutin have been studied individually for their therapeutic value, the synergistic effect of combining the two has previously not been measured. The objective of this trial was to evaluate the anti-inflammatory and antioxidant properties of both quercetin and rutin when combined in the form of SophorOx™ (a proprietary preparation of quercetin-rutin) in exercised rats. Methods: Sprague-Dawley rats were orally administered SophorOx™ at 500 mg·kg-1·b.w. and subjected to daily exercise on a fabricated treadmill for 4 weeks. A total of 24 animals were randomly divided into four groups. All the animals were examined for body weight, feed consumption, signs of clinical abnormalities, and morbidity. In addition, serum collected on days 8, 15, 22, and 29 were measured for the liver function test (LFT), random blood sugar (RBS), inflammatory markers C-reactive protein (CRP), oxidative stress markers (8-isoprostane (8-iso-PGF2α), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and cytokine levels interleukin-1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α)) by the ELISA method. Results: Rats that received SophorOx™ showed no signs of adverse effects, and no significant changes were observed in body weight, feed consumption, liver enzymes, and blood glucose levels. The exercise-treated rats administered with SophorOx™ exhibited a significant reduction in oxidative and inflammatory marker levels, viz., CRP (113.32 ng·mL-1) and oxidative stress markers 8-OHdG (19.32 pg·mL-1), MDA (1.06 nmol·mL-1), 8-iso-PGF2α (1.29 ng·mL-1), IL-1ß (0.77 pg·mL-1), and IL-6 (317.14 pg·mL-1) in comparison to those rodents that were exercised without SophorOx™. Conclusion: Oral administration of SophorOx™ significantly reduced oxidative stress and inflammatory marker levels when measured in the rodents subjected to high-intensity exercise.


Assuntos
Antioxidantes , Quercetina , Ratos , Animais , Quercetina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Rutina/farmacologia , Rutina/uso terapêutico , Interleucina-6/metabolismo , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Estresse Oxidativo , Proteína C-Reativa/metabolismo , Peso Corporal , Fator de Necrose Tumoral alfa/metabolismo
10.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256111

RESUMO

Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson's disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100ß) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment.


Assuntos
Plexo Mientérico , Doença de Parkinson , Masculino , Ratos , Animais , Ratos Wistar , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Rutina/farmacologia , Rutina/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Modelos Animais de Doenças , Neurônios Dopaminérgicos
11.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892197

RESUMO

Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.


Assuntos
Antivirais , Desinfetantes , Rutina , Desinfetantes/farmacologia , Desinfetantes/química , Antivirais/farmacologia , Antivirais/química , Rutina/química , Rutina/farmacologia , Humanos , Simulação por Computador , Vírus/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Ligação Proteica
12.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930884

RESUMO

Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.


Assuntos
Lesão Pulmonar Aguda , Cério , Manitol , Nanopartículas , Polímeros , Quercetina , Lesão Pulmonar Aguda/tratamento farmacológico , Quercetina/farmacologia , Quercetina/química , Animais , Manitol/química , Manitol/uso terapêutico , Nanopartículas/química , Camundongos , Polímeros/química , Cério/química , Cério/farmacologia , Cério/uso terapêutico , Rutina/química , Rutina/farmacologia , Rutina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Sinergismo Farmacológico , Modelos Animais de Doenças , Lipopolissacarídeos
13.
Inflammopharmacology ; 32(2): 1295-1315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512652

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Masculino , Animais , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Cuprizona/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B/metabolismo , Rutina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683406

RESUMO

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Percepção de Quorum , Rutina , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Rutina/farmacologia , Rutina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Percepção de Quorum/efeitos dos fármacos , Nanopartículas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nanopartículas Metálicas/química , Hemólise/efeitos dos fármacos , Virulência/efeitos dos fármacos , Tamanho da Partícula , Piocianina/metabolismo
15.
Yale J Biol Med ; 97(2): 153-164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947101

RESUMO

The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.


Assuntos
Doença de Alzheimer , Carbono , Glucose , Nitrogênio , Rutina , Rutina/farmacologia , Rutina/química , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carbono/química , Carbono/farmacologia , Nitrogênio/química , Ratos , Glucose/metabolismo , Masculino , Pontos Quânticos/química , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Humanos
16.
Microb Pathog ; 184: 106380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821049

RESUMO

In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.


Assuntos
Begoniaceae , Rutina , Ratos , Animais , Rutina/farmacologia , Rutina/uso terapêutico , Shigella flexneri , Begoniaceae/metabolismo , Antidiarreicos/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Simulação de Acoplamento Molecular , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Citocinas/metabolismo , Adenosina Trifosfatases/metabolismo
17.
Toxicol Appl Pharmacol ; 467: 116479, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963520

RESUMO

Drug-induced organ injury is one of the key factors causing organ failure and death in the global public. Triptolide (TP) is the main immunosuppressive component of Tripterygium wilfordii Hook. f. (Leigongteng, LGT) for the first-line management of autoimmune conditions, but it can cause serious multi-organ injury. Lysimachia christinae (Jinqiancao, JQC) is a detoxifying Chinese medicine and could suppress LGT's toxicity. It contains many immune enhancement and organ protection components including chlorogenic acid (CA), rutin (Rut), and quercetin (Que). This study aimed to explore the protection of combined treatments of these organ-protective ingredients of JQC on TP-induced liver, kidney, and heart injury and initially explore the mechanisms. Molecular docking showed that CA, Rut, and Que bounded protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway-related molecules intimately and might competitively antagonize TP. Corresponding in vivo results showed that the combination activated TP-inhibited protein of AKT/mTOR pathway, and reversed TP-induced excessive ferroptosis (excessive Fe 2+ and lipid peroxidation malondialdehyde accumulation, decreased levels of antioxidant enzymes catalase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and superoxide dismutase, and down-regulated P62/nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway), and apoptosis (activated apoptotic factor Fas and Bax and inhibited Bcl-2) in the organ of mice to varying degrees. In conclusion, the combined treatments of CA, Rut, and Que from JQC inhibited TP-induced multi-organ injury in vivo, and the mechanism may largely involve immunomodulation and activation of the AKT/mTOR pathway-mediated cell death reduction including ferroptosis and apoptosis inhibition.


Assuntos
Diterpenos , Ferroptose , Fenantrenos , Camundongos , Animais , Quercetina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Clorogênico , Lysimachia , Rutina/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Diterpenos/toxicidade , Fenantrenos/toxicidade , Apoptose , Compostos de Epóxi/toxicidade
18.
Cell Biol Int ; 47(3): 598-611, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36378583

RESUMO

Oxidative stress is a major cause of ovarian aging and follicular atresia. There is growing evidence that showed potential roles of rutin in antidiabetic, anti-inflammatory, antitumor, antibacterial and antioxidant, although it is yet unclear what the underlying mechanism is. Here, we looked into the potential effects of rutin on oxidative stress in the prehierarchical small white follicles (SWFs) from 580-day-old (D580) laying chickens. According to the findings, aging D580 layer ferroptosis was much higher than it was for laying hens during the peak period (280-day-old, D280). In both naturally aged and d-gal-induced chicken SWFs, rutin treatment concurrently boosted cell proliferation and prevented apoptosis. In addition, rutin inhibited the increased ferroptosis in aging hens. Meanwhile, rutin markedly suppressed the elevated ferroptosis and descending antioxidant capacity of D280-culture-SWFs from chicken elicited by d-gal. Rutin's activation of the Nrf2/HO-1 pathway hastened the SWFs' verbal battle with oxidative damage and reduced ferroptosis. Furthermore, activation of the ferroptosis signal increased the oxidative damage in SWFs. In conclusion, rutin alleviated oxidative stress that was induced by ferroptosis in aging chicken SWFs through Nrf2/HO-1 pathway. These findings point to a novel mechanism by which rutin protects SWFs from oxidative stress by suppressing ferroptosis, which is presumably a fresh approach to slowing ovarian aging in laying hens.


Assuntos
Antioxidantes , Ferroptose , Feminino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rutina/farmacologia , Galinhas/metabolismo , Atresia Folicular , Estresse Oxidativo , Envelhecimento
19.
Fish Shellfish Immunol ; 141: 109062, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678480

RESUMO

Neuroinflammation is prevalent in multiple brain diseases and may also lead to dementia, cognitive impairment, and impaired spatial memory function associated with neurodegenerative diseases. A neuroprotective and antioxidant flavonoid, rutin hydrate (RH), was evaluated for the anti-neuroinflammatory activity mediated by copper sulfate (CuSO4) solution and lipopolysaccharide (LPS) in zebrafish. The results showed that 100 mg/L RH significantly reduced the ratio of neutrophil mobility in caudal hematopoietic tissue (CHT) region caused by CuSO4 and the number of neutrophils co-localized with facial peripheral nerves. In the LPS model, RH co-injection significantly diminished neutrophil and macrophage migration. Therefore, RH exhibited a significant rescue effect on both models. In addition, RH treatment remarkably reduced the effects of neuroinflammation on the locomotor ability, expression levels of genes associated with behavioral disorders, and acetylcholinesterase (AChE) activity. Furthermore, network pharmacology techniques were employed to investigate the potential mechanisms, and the associated genes and enzyme activities were validated in order to elucidate the underlying mechanisms. Network pharmacological analysis and zebrafish model indicated that RH regulated the expressions of NF-κB pathway-related targets (Toll-like receptor 9 (tlr9), nuclear factor kappa B subunit 1 (nfkb1), RELA proto-oncogene (RelA), nitric oxide synthase 2a, inducible (nos2a), tumour necrosis factor alpha-like (tnfα), interleukin 6 (il6), interleukin 1ß (il1ß), chemokine 8 (cxcl8), and macrophage migration inhibitory factor (mif)) as well as six key factors (arachidonic acid 4 alpha-lipoxygenase (alox4a), arachidonate 5-lipoxygenase a (alox5), prion protein a (prnpa), integrin, beta 2 (itgb2), catalase (CAT), and alkaline phosphatase (ALP) enzymes). Through this study, a thorough understanding of the mechanism underlying the therapeutic effects of RH in neuroinflammation has been achieved, thereby establishing a solid foundation for further research on the potential therapeutic applications of RH in neuroinflammatory disorders.


Assuntos
NF-kappa B , Peixe-Zebra , Animais , NF-kappa B/metabolismo , Peixe-Zebra/metabolismo , Doenças Neuroinflamatórias , Rutina/farmacologia , Rutina/metabolismo , Rutina/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Acetilcolinesterase/metabolismo , Microglia , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Biol Rep ; 50(1): 203-213, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319783

RESUMO

BACKGROUND: The studies have shown that rutin has great potential as an anticancer and antimicrobial plant base agent; nevertheless, poor bioavailability and low aqueous solubility of rutin limit its application. One of the beneficial routes to increase the solubility and bioavailability of rutin is the development of nanoparticulate material. This study aimed to assess the anticancer and antibacterial effects of rutin-loaded mesoporous silica nanoparticles (RUT-MSNs). METHODS: RUT-MSNs were prepared and physicochemically characterized. The cytotoxicity of RUT-MSNs on the HN5 cells as head and neck cancer cells was evaluated. The expression level of apoptosis-related genes such as Bcl-2 and Bax genes were evaluated. In addition, ROS production of RUT-MSNs treated cells was assessed. In addition, minimum inhibitory concentration (MIC), biofilm, and attachment inhibitory effects of RUT-MSNs compared with free rutin were assessed against different bacterial strains. RESULTS: Transmission electron microscopy (TEM) showed mesoporous rod-shaped nanoparticles with an average particle size of less than 100 nm. RUT-MSNs displayed the cytotoxic effect with IC50 of 20.23 µM in 48 h of incubation time (p < 0.05). The elevation in the ratio of Bax/Bcl-2 was displayed within the IC50 concentration of RUT-MSNs in 48 h (p < 0.05). The antibacterial action of rutin was improved by loading rutin in MSNs to the nano-sized range in the MIC test. CONCLUSION: The anticancer and antibacterial effects of RUT-MSNs were considerably more than rutin. RUT-MSNs inhibited the growth of HN5 cells by inducing apoptosis and producing ROS. These results suggest that RUT-MSNs may be useful in the treatment of cancers and infections.


Assuntos
Nanopartículas , Rutina , Rutina/farmacologia , Dióxido de Silício , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2 , Nanopartículas/química , Antibacterianos/farmacologia , Portadores de Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA