RESUMO
Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies.
Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Vaping , Nicotina/análise , Nicotina/química , Radicais Livres/química , Radicais Livres/análise , Vaping/efeitos adversos , Sais/química , Sais/análise , Soluções , Ácido Benzoico/química , Ácido Benzoico/análise , Ácidos Levulínicos/química , Ácidos Levulínicos/análise , MalatosRESUMO
Mountain salts produced from the highland region in NE Sarawak have a market value and also provide basic income to the communities. During the salt-making process, microplastics (MPs) may enter into commercial table salts from various sources, which has not been explored yet. Hence, the current research investigates the presence of MPs in the rock salts produced from the highland saline water in two different locations (L1 and L2) in NE Sarawak. Among the brine water and rock salt samples analysed, the highest concentrations of MPs were detected from the salt samples. It has been revealed that both the water and salt samples have the highest concentration of MPs occurring within the size range of 1-1000 µm. Transparent MPs are the most common colour observed in both salt and water samples, followed by white, blue, red, and black. The most prevalent shapes of MPs are fibers, which account for almost 47% in water samples and 87% in salt samples. Based on the ATR-FTIR study, polyethylene (PE) is the most prevalent polymer observed in salt samples, followed by polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). In water samples, PP is the most dominating polymer, followed by PE and PS. Through SEM microphotographs, fiber-type MPs have smooth surfaces, fragment-type MPs have rough edges, and sheet-type MPs have layered surfaces. EDX analysis revealed that carbon (C) and oxygen (O) are the most abundant elements, followed by aluminium (Al) and sodium (Na) in MPs. Based on the results, it is inferred that the MPs in the rock salts are mainly sourced from the different stages of salt-making production. This preliminary study shed light on the presence and characteristics of MPs in rock salts in this region. The research outcomes could support sustainable management plans to improve the salt quality and enhance the market value.
Assuntos
Microplásticos , Sais , Microplásticos/análise , Sais/química , Sais/análise , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Process cheese products (PCP) are dairy foods prepared by blending dairy ingredients (such as natural cheese, protein concentrates, butter, nonfat dry milk, whey powder, and permeate) with nondairy ingredients [such as sodium chloride, water, emulsifying salts (ES), color, and flavors] and then heating the mixture to obtain a homogeneous product with an extended shelf life. The ES, such as sodium citrate and disodium phosphate, are critical for the unique microstructure and functional properties of PCP because they improve the emulsification characteristics of casein by displacing the calcium phosphate complexes that are present in the insoluble calcium-paracaseinate-phosphate network in natural cheese. The objectives of this study were to determine the optimum protein content (3, 6, and 9% protein) in micellar casein concentrate (MCC) to produce acid curd and to manufacture PCP using a combination of acid curd cheese and MCC that would provide the desired improvement in the emulsification capacity of caseins without the use of ES. To produce acid curd, MCC was acidified using lactic acid to get a pH of 4.6. In the experimental formulation, the acid curd was blended with MCC to have a 2:1 ratio of protein from acid curd relative to MCC. The PCP was manufactured by blending all ingredients in a KitchenAid blender (Professional 5 Plus, KitchenAid) to produce a homogeneous paste. A 25-g sample of the paste was cooked in the rapid visco analyzer (RVA) for 3 min at 95°C at 1,000 rpm stirring speed during the first 2 min and 160 rpm for the last min. The cooked PCP was then transferred into molds and refrigerated until further analysis. This trial was repeated 3 times using different batches of acid curd. MCC with 9% protein resulted in acid curd with more adjusted yield. The end apparent viscosity (402.0-483.0 cP), hardness (354.0-384.0 g), melting temperature (48.0-51.0°C), and melting diameter (30.0-31.4 mm) of PCP made from different acid curds were slightly different from the characteristics of typical PCP produced with conventional ingredients and ES (576.6 cP end apparent viscosity, 119.0 g hardness, 59.8°C melting temperature, and 41.2 mm melting diameter) due to the differences in pH of final PCP (5.8 in ES PCP compared with 5.4 in no ES PCP). We concluded that acid curd can be produced from MCC with different protein content. Also, we found that PCP can be made with no ES when the formulation uses a 2:1 ratio of acid curd relative to MCC (on a protein basis).
Assuntos
Queijo , Animais , Queijo/análise , Caseínas/química , Sais/análise , Micelas , Leite/química , Fosfatos/análise , Manipulação de Alimentos/métodosRESUMO
Textile effluents, although their composition can vary considerably, typically contain high levels of dissolved salts and exhibit wide variations in pH. Ecotoxicological studies regarding the effects of these parameters, however, have been limited owing to the need for sensitive and easy-to-handle bioindicators that require low amounts of sampling, are cost-effective, time-efficient, and ethically endorsed. This kind of study, additionally, demands robust multi-factorial statistical designs that can accurately characterize the individual and combined relationship between variables. In this research, Response Surface Methodology (RSM) was used to calculate the individual and interaction effects of NaCl concentration and pH value of a Simulated Textile Effluent (STE) on the development rate (DR) of the bioindicators: Bacillus subtilis bacteria and Lactuca sativa lettuce. The results demonstrated that the bioindicators were sensitive to both NaCl and pH factors, where the relative sensitivity relationship was B. subtilis > L. sativa. The quadratic equations generated in the experiments indicated that increased concentrations of 50-250 mg L-1 of NaCl caused a perturbance of 1.40%-34.40% on the DR of B. subtilis and 0.50%-12.30% on L. sativa. The pH factor at values of 3-11 caused an alteration of 27.00%-64.78% on the DR of the B. subtilis and 51.37%-37.37% on the L. sativa. These findings suggest that the selected bioindicators could serve as effective tools to assess the ecotoxicological effects of textile effluents on different ecological systems, and the RSM was an excellent tool to consider the ecotoxicological effects of the parameters and to describe the behavior of the results. In conclusion, the NaCl and pH factors may be responsible for disrupting different ecosystems, causing imbalances in their biodiversity and biomass. Before discharge or reuse, it is suggested to remove salts and neutralize pH from textile effluents and, mostly, develop novel, eco-friendlier textile processing techniques.
Assuntos
Bacillus subtilis , Poluentes Químicos da Água , Lactuca , Cloreto de Sódio/toxicidade , Cloreto de Sódio/análise , Ecossistema , Biomarcadores Ambientais , Sais/análise , Concentração de Íons de Hidrogênio , Têxteis , Indústria Têxtil , Poluentes Químicos da Água/análise , Resíduos Industriais/análiseRESUMO
Atmospheric amines have attracted increasing attention due to their significant impact on new particle formation, particle hygroscopicity and particle optical properties. In this study, four low-molecule-weight amines were detected from PM2.5 filter samples collected at an urban site of Pearl River Delta (PRD) region of China in 2018 autumn. During the campaign, the mass concentrations of ambient particulate methylamine (MA, CH3NH2), dimethylamine (DMA, (CH3)2NH), trimethylamine (TMA, (CH3)3N), and diethylamine (DEA, (C2H5)2NH) were quantified at daily or 12-h resolution using an optimized Ion Chromatograph (IC) method. The total measured amine concentration was 297 ± 209 ng/m3, which can account for 0.76 ± 0.33% of PM2.5 mass concentrations. The particulate amines in PRD urban area were dominated by MA (243 ± 179 ng/m3), accounting for over 80% of total amines, then followed by DMA (49 ± 30 ng/m3, 16.5%), TMA (4 ± 2 ng/m3) and DEA (1 ± 1 ng/m3). Based on the correlation analysis, MA and DMA mainly presented as nitrate and sulfate salts. We speculate the amines tend to react with gas-phase HNO3 or particle-phase nitrate to form particulate amine salts via local process in Guangzhou. As the relative humidity (RH) increased, enhanced partitioning of amine towards the particle phase was observed. Using approach of multiple linear regression, 71% of the particulate amines in PRD urban site could be explained by acid-base process and the rest by primary emissions from combustion sources (29%).
Assuntos
Poluentes Atmosféricos , Rios , Poluentes Atmosféricos/análise , Aminas/análise , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Nitratos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Sais/análiseRESUMO
Sewage comprises multifarious information on sewershed characteristics. For instance, influent sewage quality parameters (ISQPs) (e.g., total nitrogen (TN)) are being monitored regularly at all treatment plants. However, the relationship between ISQPs and sewershed characteristics is rarely investigated. Therefore, this study statistically investigated relationships between ISQPs and sewershed characteristics, covering demographic, social, and economic properties in Tokyo city as an example of a megacity. To this end, we collected ISQPs and sewershed characteristic data from 2015 to 2020 in 10 sewersheds in Tokyo city. By principal component analysis, spatial variability of ISQPs was aggregated into two principal components (89.8% contribution in total), indicating organics/nutrients and inorganic salts, respectively. Concentrations of organics/nutrients were significantly correlated with the population in sewersheds (daytime population density, family size, age distribution, etc.). Inorganic salts are significantly correlated with land cover ratios. Finally, a multiple regression model was developed for estimating the concentration of TN based on sewershed characteristics (R2=0.97). Scenario analysis using the regression model revealed that possible population movements in response to the coronavirus pandemic would substantially reduce the concentration of TN. These results indicate close relationships between ISQPs and sewershed characteristics and the potential applicability of big data of ISQPs to estimate sewershed characteristics and vice versa.
Assuntos
Esgotos , Poluentes Químicos da Água , Nitrogênio/análise , Sais/análise , Esgotos/análise , Tóquio , Poluentes Químicos da Água/análiseRESUMO
NMR relaxometry measurement by time domain NMR (TD-NMR) is a promising technique for characterizing the properties of active pharmaceutical ingredients (APIs). This study is dedicated to identifying the salt and free base of APIs by NMR relaxometry measured by the TD-NMR technique. Procaine (PC) and tetracaine (TC) were selected as model APIs to be tested. By using conventional methods including powder X-ray diffraction and differential scanning calorimetry, this study first confirmed that the salt and free base of the tested APIs differ from each other in their crystalline form. Subsequently, measurements of T1 and T2 relaxation were performed on the tested APIs using TD-NMR. The results demonstrated that these NMR relaxometry measurements have sufficient capacity to distinguish the difference between the free base and salt of the tested APIs. Furthermore, quantification of the composition of the binary powder blends consisting of salt and free bases was conducted by analyzing the acquired T1 and T2 relaxation curves. The analysis of the T1 relaxation curves provided a partly acceptable estimation: a good estimation of the composition was observed from PC powders, whereas for TC powders the estimation accuracy changed with the free base content in the binary blends. For the analysis on T2 relaxation curves, a precise estimation of the composition was observed from all the samples. From these findings, the NMR relaxometry measurement by TD-NMR, in particular the T2 relaxation measurement, is effective for evaluating the properties of APIs having different crystalline forms.
Assuntos
Preparações Farmacêuticas/análise , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética , Sais/análise , Fatores de Tempo , Difração de Raios XRESUMO
Bromine K-edge X-ray absorption near-edge structure (XANES) spectroscopy analyses were used to evaluate the crystals of the active pharmaceutical ingredients, eletriptan hydrobromide, dextromethorphan hydrobromide and scopolamine hydrobromide salts and the solid dispersion of eletriptan hydrobromide. The crystals and the solid dispersion of the active pharmaceutical ingredient (API) salts could be discriminated based on the shape of the XANES spectra. The differences in the shape of XANES spectra was ascribable to the differences in the interatomic interactions of the bromine ions based on the crystal structures. Ratio of the eletriptan hydrobromide α-form crystal in mixed powders of α-form and monohydrate crystals could be quantified by the linear-combination fitting using their XANES spectra. These results indicated that the XANES spectroscopy are a potent method for evaluating the APIs of pharmaceutical formulations even at the higher energy region around the bromine K-edge of 13470 eV.
Assuntos
Bromo/química , Hidrocarbonetos Bromados/análise , Preparações Farmacêuticas/análise , Catálise , Estrutura Molecular , Sais/análise , Espectroscopia por Absorção de Raios XRESUMO
Pinus radiata bark is a rich source of polyphenols, which are mainly composed of proanthocyanidins. This study aimed to utilize P. radiata bark as a polyol source for bio-foam production in the future. Polyphenol-rich alkaline extracts (AEs) from P. radiata bark were prepared by mild alkaline treatment and then derivatized with propylene oxide (PO). Hydroxypropylated alkaline extracts (HAEs) with varying molar substitutions (MS 0.4-8.0) were characterized by FT-IR, NMR, GPC, TGA, and DSC. The hydroxyl value and solubility in commercial polyols were also determined. The molecular weights of the acetylated HAEs (Ac-HAEs) were found to be 4000 to 4900 Da. Analyses of FT-IR of HAEs and 1H NMR of Ac-HAEs indicated that the aromatic hydroxyl groups were hydroxypropylated and showed an increase in aliphatic hydroxyl group content. The glass transition temperature (Tg) of AE and HAEs were 58 to 60 °C, showing little difference. The hydroxyl value increased as the hydroxypropylation proceeded. Although salts were produced upon neutralization after hydroxypropylation, HAEs still showed suitable solubility in polyether and polyester polyols; HAEs dissolved well in polyether polyol, PEG#400, and solubility reached about 50% (w/w). This indicated that neutralized HAEs could be directly applied to bio-foam production even without removing salts.
Assuntos
Pinus , Polifenóis , Polifenóis/análise , Pinus/química , Casca de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Sais/análise , Extratos Vegetais/químicaRESUMO
In this work, a flow-based spectrofluorimetric method for iodine determination was developed. The system consisted of a miniaturized chip-based flow manifold for solutions handling and with integrated spectrofluorimetric detection. A multi-syringe module was used as a liquid driver. Iodide was quantified from its catalytic effect on the redox reaction between Ce(IV) and As(III), based on the Sandell-Kolthoff reaction. The method was applied for the determination of iodine in salt, pharmaceuticals, supplement pills, and seaweed samples without off-line pre-treatment. An in-line oxidation process, aided by UV radiation, was implemented to analyse some samples (supplement pills and seaweed samples) to eliminate interferences and release iodine from organo-iodine compounds. This feature, combined with the fluorometric reaction, makes this method simpler, faster, and more sensitive than the classic approach of the Sandell-Kolthoff reaction. The method allowed iodine to be determined within a range of 0.20-4.0 µmol L-1, with or without the in-line UV digestion, with a limit of detection of 0.028 µmol L-1 and 0.025 µmol L-1, respectively.
Assuntos
Iodo/análise , Preparações Farmacêuticas/análise , Sais/análise , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Digestão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Fluorescência/normas , SeringasRESUMO
Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required.
Assuntos
Materiais Biocompatíveis/química , Animais , Dimetilpolisiloxanos/análise , Humanos , Hidrocarbonetos/análise , Espectrometria de Massas , Microscopia de Varredura por Sonda , Óleos/análise , Dispositivos Ópticos , Espectroscopia Fotoeletrônica , Sais/análise , Solventes/análise , Propriedades de Superfície , SíncrotronsRESUMO
A perennially frozen lake at Boulder Clay site (Victoria Land, Antarctica), characterized by the presence of frost mounds, have been selected as an in situ model for ecological studies. Different samples of permafrost, glacier ice and brines have been studied as a unique habitat system. An additional sample of brines (collected in another frozen lake close to the previous one) was also considered. Alpha- and beta-diversity of fungal communities showed both intra- and inter-cores significant (p < 0.05) differences, which suggest the presence of interconnection among the habitats. Therefore, the layers of frost mound and the deep glacier could be interconnected while the brines could probably be considered as an open habitat system not interconnected with each other. Moreover, the absence of similarity between the lake ice and the underlying permafrost suggested that the lake is perennially frozen based. The predominance of positive significant (p < 0.05) co-occurrences among some fungal taxa allowed to postulate the existence of an ecological equilibrium in the habitats systems. The positive significant (p < 0.05) correlation between salt concentration, total organic carbon and pH, and some fungal taxa suggests that a few abiotic parameters could drive fungal diversity inside these ecological niches.
Assuntos
Fungos/classificação , Camada de Gelo/microbiologia , Pergelissolo/microbiologia , Regiões Antárticas , Argila , Ecossistema , Fungos/genética , Camada de Gelo/química , Lagos/química , Lagos/microbiologia , Micobioma , Compostos Orgânicos/análise , Pergelissolo/química , Salinidade , Sais/análiseRESUMO
Two moderately halophilic strains SBS 10T and SSO 06 were isolated from the saltern crystallizer ponds of the hypersaline Sambhar Salt Lake in India. Strains were aerobic, Gram-stain-negative, and rod shaped. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that two strains belong to the genus Halomonas in the Gammaproteobacteria, with highest 16S rRNA gene sequence similarities with Halomonas gudaonensis LMG 23610T (98.2% similarity) and Halomonas campaniensis 5AGT (99.0% similarity). Strains grew optimally at 37 °C, pH 7.5-8.0 in the presence of 5-8% (w/v) NaCl. The major fatty acids of the strain SBS 10T were C18:1ω7c (54.37%), C16:0 (25.69%), C16:1 × 7c/C16:1 × 6c (13.28%), and C12:0 (1.21%). The G+C content was 63.6 mol % (Tm). Phenotypic features, fatty acids profile, and DNA G+C content supported placement of the strain SBS 10T in the genus Halomonas having distinct characteristics with related strains. Analysis of the housekeeping genes: gryB and rpoD and in silico DNA-DNA hybridization between the strain SBS 10T and its type strain Halomonas gudaonensis (LMG 23610T) further revealed the strain SBS 10T to be a distinct species. On the basis of the phenotypic, chemotaxonomic and phylogenetic analysis, the strain SBS 10T is considered to represent a novel species for which the name Halomonas sambharensis is proposed. The type strain is SBS 10T (= MTCC 12313T = LMG 30344T).
Assuntos
Halomonas/classificação , Halomonas/fisiologia , Lagoas/microbiologia , Sais/metabolismo , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos , Genes Essenciais/genética , Halomonas/química , Halomonas/citologia , Concentração de Íons de Hidrogênio , Índia , Lagos , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Lagoas/química , RNA Ribossômico 16S/genética , Sais/análise , Análise de Sequência de DNA , Especificidade da Espécie , TemperaturaRESUMO
The fermentation of vegetables is a traditional preservation method, that experiences a renaissance even in domestic households. Table salt is added to the fermentation batches to favor the growth of lactic acid bacteria usually. On an industrial scale, the fermentation brine is typically prepared with non-iodized table salt. In our study, we investigated the microbiota of cucumber fermentations using culture-dependent and -independent methods. We could show that the fermentation process of cucumbers and the involved microbiota is influenced by the concentration of table salt and not by the use of iodized table salt. Therefore, we conclude that the use of iodized table salt does not negatively affect the fermentation process. We could verify that iodine permeates the cucumbers by diffusion, leading to satisfactory iodine concentrations in the final food product. The industrial use of iodized table salt in food fermentations could contribute to maintain a constant iodine supply to the general public.
Assuntos
Cucumis sativus/microbiologia , Alimentos Fermentados/microbiologia , Iodo/farmacologia , Microbiota/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio/farmacologia , Cucumis sativus/química , Cucumis sativus/metabolismo , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Iodo/análise , Sais/análise , Sais/farmacologia , Cloreto de Sódio/análise , Cloreto de Sódio na Dieta/análiseRESUMO
Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.
Assuntos
DNA/química , Sais/análise , Conformação de Ácido NucleicoRESUMO
BACKGROUND: The effects were studied of different inoculation strategies for selected starters -yeasts and lactic acid bacteria (LAB) - used for the fermentation process of two Greek olive cultivars, Conservolea and Kalamàta. The LAB strains applied were Leuconostoc mesenteroides K T5-1 and L. plantarum A 135-5; the selected yeast strains were S. cerevisiae KI 30-16 and Debaryomyces hansenii A 15-44 for Kalamàta and Conservolea olives, respectively. RESULTS: Table olive fermentation processes were monitored by performing microbiological analyses, and by monitoring changes in pH, titratable acidity and salinity, sugar consumption, and the evolution of volatile compounds. Structural modifications occurring in phenolic compounds of brine were investigated during the fermentation using liquid chromatography / diode array detection / electrospray ion trap tandem mass spectrometry (LC/DAD/ESI-MSn ) and quantified by high-performance liquid chromatography (HPLC) using a diode array detector. Phenolic compounds in processed Kalamàta olive brines consisted of phenolic acids, verbascoside, caffeoyl-6-secologanoside, comselogoside, and the dialdehydic form of decarboxymethylelenolic acid linked to hydroxytyrosol, whereas oleoside and oleoside 11-methyl ester were identified only in Conservolea olive brines. CONCLUSION: Volatile profile and sensory evaluation revealed that the 'MIX' (co-inoculum of yeast and LAB strain) inoculation strategy led to the most aromatic and acceptable Kalamàta olives. For the Conservolea table olives, the 'YL' treatment gave the most aromatic and the overall most acceptable product. © 2019 Society of Chemical Industry.
Assuntos
Debaryomyces/metabolismo , Microbiologia de Alimentos/métodos , Lactobacillales/metabolismo , Olea/química , Olea/microbiologia , Fenol/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Frutas/química , Frutas/microbiologia , Humanos , Fenol/análise , Sais/análise , Sais/metabolismo , PaladarRESUMO
Present study is aimed to explore the rapid and reliable method of analyzing the composition of concentric layers of stones by fourier transform infrared spectroscopy with Kidney Stone Library Software (KSLS-13). Total of 69 kidney stones recovered from kidney stone patients (33 males and 36 females, mean age ranges of males and females were 10.1 to 37.3 & 15.2 to 54.4 respectively) were analyzed by fourier transform infrared spectroscopy. Composition of central, middle, peripheral layers of each kidney stone and whole stone were analyzed in the research laboratory of Institute of Biochemistry. Spectra of layers of kidney stones were collected and compared with kidney stone library software (KSLS-13). Among 69 kidney stones, 25 (36.2%) were pure stones (23.2% pure Calcium oxalate mono hydrate (COM), 10% pure carbonate apatite (CA), 3% pure magnesium ammonium phosphate (MAP)) and 44 (63.7%) mixed stones. Among 69 kidney stones, most prevalent were pure calcium oxalate stones (23.2%) and calcium oxalate mono hydrate stones mixed with carbonate apatite and ammonium hydrogen urate (AHU) (18.8%). The IR bands were compared with KSLS-13 as well as with standards. Calcium oxalate mono hydrate, carbonate apatite and uric acid were significantly increased in middle layer, but ammonium hydrogen urate and calcium oxalate dihydrate (COD) were increased in periphery. Whereas, reverse was true for magnesium ammonium phosphate in central layer. In conclusion, KSLS-13 by FTIR is found to be the most rapid and reliable method to study composition of concentric layers of kidney stones.
Assuntos
Cálculos Renais/química , Sais/análise , Software , Adolescente , Adulto , Criança , Bases de Dados de Compostos Químicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Infravermelho com Transformada de Fourier , Adulto JovemRESUMO
Antarctic subglacial environments host microbial ecosystems and are proving to be geochemically and biologically diverse. The Taylor Glacier, Antarctica, periodically expels iron-rich brine through a conduit sourced from a deep subglacial aquifer, creating a dramatic red surface feature known as Blood Falls. We used Illumina MiSeq sequencing to describe the core microbiome of this subglacial brine and identified previously undetected but abundant groups including the candidate bacterial phylum Atribacteria and archaeal phylum Pacearchaeota. Our work represents the first microbial characterization of samples collected from within a glacier using a melt probe, and the only Antarctic subglacial aquatic environment that, to date, has been sampled twice. A comparative analysis showed the brine community to be stable at the operational taxonomic unit level of 99% identity over a decade. Higher resolution sequencing enabled deconvolution of the microbiome of subglacial brine from mixtures of materials collected at the glacier surface. Diversity patterns between this brine and samples from the surrounding landscape provide insight into the hydrological connectivity of subglacial fluids to the surface polar desert environment. Understanding subice brines collected on the surfaces of thick ice covers has implications for analyses of expelled materials that may be sampled on icy extraterrestrial worlds.
Assuntos
Archaea/classificação , Bactérias/classificação , Camada de Gelo/microbiologia , Regiões Antárticas , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Camada de Gelo/química , Microbiota , RNA Ribossômico 16S/genética , Sais/análiseRESUMO
A decline in surface water sources in Pakistan is continuously causing the over-extraction of groundwater resources which is in turn costing the saltwater intrusion in many areas of the country. The saltwater intrusion is a major problem in sustainable groundwater development. The application of electrical resistivity methods is one of the best known geophysical approaches in groundwater study. Considering the accuracy in extraction of freshwater resources, the use of resistivity methods is highly successful to delineate the fresh-saline aquifer boundary. An integrated geophysical study of VES and ERI methods was carried out through the analysis and interpretation of resistivity data using Schlumberger array. The main purpose of this investigation was to delineate the fresh/saline aquifer zones for exploitation and management of fresh water resources in the Upper Bari Doab, northeast Punjab, Pakistan. The results suggest that sudden drop in resistivity values caused by the solute salts indicates the saline aquifer, whereas high resistivity values above a specific range reveal the fresh water. However, the overlapping of fresh/saline aquifers caused by the formation resistivity was delineated through confident solutions of the D-Z parameters computed from the VES data. A four-layered unified model of the subsurface geologic formation was constrained by the calibration between formation resistivity and borehole lithologs. i.e., sand and gravel-sand containing fresh water, clay-sand with brackish water, and clay having saline water. The aquifer yield contained within the fresh/saline aquifers was measured by the hydraulic parameters. The fresh-saline interface demarcated by the resistivity methods was confirmed by the geochemical method and the local hydrogeological data. The proposed geophysical approach can delineate the fresh-saline boundary with 90% confidence in any homogeneous or heterogeneous aquifer system.
Assuntos
Monitoramento Ambiental/métodos , Geologia/métodos , Água Subterrânea/análise , Água Doce/análise , Água Subterrânea/normas , Paquistão , Sais/análise , Recursos HídricosRESUMO
AIMS: Accumulation of carbon dioxide (CO2 ) in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)-deficient starter culture to minimize CO2 production and the resulting bloater index in sodium chloride-free cucumber fermentations brined with CaCl2 . METHODS AND RESULTS: Attempts to isolate autochthonous MDC-deficient starter cultures from commercial fermentations, using the MD medium for screening, were unsuccessful. The utilization of allochthonous MDC-deficient starter cultures resulted in incomplete utilization of sugars and delayed fermentations. Acidified fermentations were considered, to suppress the indigenous microbiota and favour proliferation of the allochthonous MDC-deficient Lactobacillus plantarum starter cultures. Inoculation of acidified fermentations with L. plantarum alone or in combination with Lactobacillus brevis minimally improved the conversion of sugars. However, inoculation of the pure allochthonous MDC-deficient starter culture to 107 CFU per ml in acidified fermentations resulted in a reduced bloater index as compared to wild fermentations and those inoculated with the mixed starter culture. CONCLUSIONS: Although use of an allochthonous MDC-deficient starter culture reduces bloater index in acidified cucumber fermentations brined with CaCl2 , an incomplete conversion of sugars is observed. SIGNIFICANCE AND IMPACT OF THE STUDY: Economical losses due to the incidence of bloaters in commercial cucumber fermentations brined with CaCl2 may be reduced utilizing a starter culture to high cell density.