RESUMO
Previously, insulin resistance and hepatic oxidative stress with increased expressions of glutathione peroxidase (GPx) 1 and selenoprotein P (SelP) were induced in NSY mice, a diabetic mouse model, by administrating a high fat diet (HFD) and seleno-L-methionine (SeMet) for 12 weeks. In this study we developed an analysis method for serum selenoproteins using LC-tandem mass spectrometry (LC-MS/MS) and investigated the effects of supplementary selenium on serum concentrations of selenoproteins as well as protein expression in skeletal muscle as a major insulin target tissue under the same experimental condition. The glucose area under the curves for oral glucose tolerance and insulin tolerance tests indicated that the HFD induced insulin resistance, whereas the treatment of SeMet + HFD showed insignificant promotion compared with the HFD-induced insulin resistance. Although the expressions of GPx1 in gastrocnemius and soleus were not significantly induced by supplementary SeMet nor HFD administration, the expressions of SelP in both skeletal muscles were significantly induced by the treatment of SeMet + HFD. There were also significant increases in serum concentrations of SelP by supplementary SeMet + HFD administration, whereas GPx3 was augmented by supplementary SeMet only. These results indicated that the HFD intake under the sufficient selenium status augmented the blood secretion of SelP, which may participate in the reduction of insulin sensitivity in skeletal muscles as well as liver or adipose tissues, and it is a better indicator of deterioration than GPx3 as it is a major selenoprotein in serum.
Assuntos
Dieta Hiperlipídica , Suplementos Nutricionais , Glutationa Peroxidase , Resistência à Insulina , Músculo Esquelético , Selênio , Selenoproteínas , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Selenoproteínas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/sangue , Selênio/sangue , Selênio/administração & dosagem , Glutationa Peroxidase GPX1 , Selenometionina/farmacologia , Selenometionina/administração & dosagem , Selenoproteína P/sangue , Selenoproteína P/metabolismo , Modelos Animais de Doenças , Glicemia/metabolismo , Insulina/sangue , Espectrometria de Massas em TandemRESUMO
Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.
Assuntos
Túbulos Renais Proximais , Traumatismo por Reperfusão , Selenoproteína P , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular , Técnicas In Vitro , Túbulos Renais Proximais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Selenoproteína P/sangue , Selenoproteína P/metabolismo , Selenito de Sódio/farmacologiaRESUMO
Selenoprotein P (SeP), an hepatokine that is primarily produced by liver, has been reported to affect glucose metabolism. In this study, we aimed to measure and compare serum SeP values in patients with polycystic ovary syndrome (PCOS) and a healthy control group, and to investigate whether there was a relationship between SeP values and insulin resistance in patients with PCOS. This prospective case-control study included 40 patients with PCOS and 39 healthy women (non-PCOS) matched for age and body mass index. SeP levels were significantly higher in the PCOS group compared with the healthy controls (7.48 ± 3.80 vs. 5.17 ± 3.20 mg/ml, p = .005). Serum insulin, hs-CRP, HOMA-IR, FBG, total-testosterone, and free-testosterone levels were higher in women with PCOS than in controls. In an unadjusted model and after adjusting for potential confounders, SeP had increased odds for PCOS (p = .007). ROC curve analysis showed that the area under the ROC curves were 0.691 (95% CI: 0.576-0.806, p < .003) for SeP levels. The optimal cut-off value of SeP for detecting PCOS was ≥5.87 mgl/ml. We showed, for the first time, that serum SeP levels were increased significantly in PCOS, Our results suggest that there is a potential link between PCOS and SeP levelsIMPACT STATEMENTWhat is already known on this subject? Selenoprotein deficiency causes various dysfunctions associated with oxidative stress, but recent studies found that increased SeP levels were associated with insulin resistance. Circulating SeP levels have been found to be increased in patients with type 2 diabetes mellitus (T2DM).What the results of this study add? Our study is the first in the literature to examine the relationship between SeP levels and the presence of PCOS. Serum SeP levels were increased significantly in PCOS.What the implications are of these findings for clinical practice and/or further research? SeP seemed to have a role in PCOS. SeP can be used to predict metabolic disorders associated with PCOS and to determine treatment methods.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome do Ovário Policístico , Selenoproteína P , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Síndrome do Ovário Policístico/complicações , Selenoproteína P/sangueRESUMO
Nonalcoholic fatty liver disease (NAFLD) is prevalent chronic liver diseases with unknown mechanism and no curative treatment. Hepatokines have demonstrated importance in NAFLD but, role of selenoprotein P (SeP) in NAFLD is unknown. A total of 79 patients with NAFLD and 79 healthy controls were included in this case-control study. SeP is elevated in patients with NAFLD. With elevating level of SeP, NAFLD prevalence, and detecting rate increases. As NAFLD aggravated, serum SeP increases. Correlation analysis demonstrates that SeP is positively associated with NAFLD risk factors including body mass index, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyltransferase, and serum uric acid. Both NAFLD in vivo and in vitro models, SeP protein level is higher in liver. Small interfering RNA of SEPP1 inhibited TG accumulation by activating adenosine monophosphate activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC), and overexpression of SEPP1 aggravated lipid accumulation and inhibited AMPK/ACC phosphorylation. SeP expression is activated in NAFLD and exacerbated NAFLD through AMPK/ACC, providing insight into new diagnostic, therapeutic target in NAFLD.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Selenoproteína P/metabolismo , Transdução de Sinais , Animais , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Curva ROC , Selenoproteína P/sangue , Selenoproteína P/genética , Índice de Gravidade de DoençaRESUMO
Low selenium status may be associated with increased risk of prostate cancer (PC), particularly aggressive PC, and variation in selenoprotein genes may constitute an important modifying factor. We aimed to investigate the association between two selenium status biomarkers [toenail selenium, plasma selenoprotein P (SELENOP)] and risk of advanced, high-grade and advanced-stage PC. We further studied whether variations in selenoprotein genes were associated with PC risk and selenium biomarker concentrations. In the "Diet, Cancer and Health" cohort, 27 178 men aged 50 to 65 years were enrolled from 1993 to 1997. Between baseline and 2012, 1160 cohort participants were diagnosed with advanced PC; among these 462 had high-grade and 281 had advanced-stage disease at diagnosis. Each case was risk set-matched to one control. Toenail selenium and plasma SELENOP concentrations were measured by neutron activation analysis and a SELENOP-ELISA, respectively, and genotyping was performed for 27 selected single nucleotide polymorphisms (SNPs) in 12 selenium pathway genes (including seven selenoproteins) by allele-specific PCR. Toenail selenium and circulating SELENOP concentrations were not associated with advanced, high-grade or advanced-stage PC. After adjustment for multiple testing, none of the genes were associated with PC risk. Neither toenail selenium nor plasma SELENOP was associated with advanced, high-grade or advanced-stage PC.
Assuntos
Biomarcadores Tumorais/sangue , Unhas/metabolismo , Neoplasias da Próstata/sangue , Selênio/metabolismo , Selenoproteína P/sangue , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Fatores de Risco , Selenoproteína P/genéticaRESUMO
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Assuntos
Espectrometria de Massas , Selenoproteína P/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Valores de Referência , Selenocisteína/metabolismo , Selenoproteína P/sangue , Selenoproteína P/químicaRESUMO
OBJECTIVE: Despite the recent progress in upfront combination therapy for pulmonary arterial hypertension (PAH), useful biomarkers for the disorder still remain to be developed. SeP (Selenoprotein P) is a glycoprotein secreted from various kinds of cells including pulmonary artery smooth muscle cells to maintain cellular metabolism. We have recently demonstrated that SeP production from pulmonary artery smooth muscle cells is upregulated and plays crucial roles in the pathogenesis of PAH. However, it remains to be elucidated whether serum SeP levels could be a useful biomarker for PAH. Approach and Results: We measured serum SeP levels and evaluated their prognostic impacts in 65 consecutive patients with PAH and 20 controls during follow-up (mean, 1520 days; interquartile range, 1393-1804 days). Serum SeP levels were measured using a newly developed sol particle homogeneous immunoassay. The patients with PAH showed significantly higher serum SeP levels compared with controls. Higher SeP levels (cutoff point, 3.47 mg/L) were associated with the outcome (composite end point of all-cause death and lung transplantation) in patients with PAH (hazard ratio, 4.85 [1.42-16.6]; P<0.01). Importantly, we found that the absolute change in SeP of patients with PAH (ΔSeP) in response to the initiation of PAH-specific therapy significantly correlated with the absolute change in mean pulmonary artery pressure, pulmonary vascular resistance (ΔPVR), and cardiac index (ΔCI; R=0.78, 0.76, and -0.71 respectively, all P<0.0001). Moreover, increase in ΔSeP during the follow-up predicted poor outcome of PAH. CONCLUSIONS: Serum SeP is a novel biomarker for diagnosis and assessment of treatment efficacy and long-term prognosis in patients with PAH.
Assuntos
Hipertensão Pulmonar/diagnóstico , Artéria Pulmonar/fisiopatologia , Selenoproteína P/sangue , Resistência Vascular/fisiologia , Biomarcadores/sangue , Cateterismo Cardíaco , Feminino , Seguimentos , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/fisiopatologia , Imunoensaio , Masculino , Pessoa de Meia-Idade , PrognósticoRESUMO
Selenoprotein P (SeP) is one of the 25 human selenocysteine (Sec)-containing proteins, and is generally thought to function as a plasma carrier of the trace element selenium in the body. Recent studies, however, indicate unsuspected pivotal roles of SeP in human diseases, particularly in type 2 diabetes mellitus (T2DM) and pulmonary arterial hypertension (PAH). In this review, we will summarize the characteristics of SeP and recent advances in the field, especially focusing on the emerging roles of SeP in pathophysiological conditions. We will also discuss potential medical/pharmaceutical applications targeting SeP.
Assuntos
Selenoproteína P/sangue , Selenoproteína P/fisiologia , Animais , Biomarcadores , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Plasma , Prognóstico , Hipertensão Arterial Pulmonar/fisiopatologia , Selênio/metabolismo , Selenoproteína P/efeitos dos fármacosRESUMO
Background: Pathogenetic mechanisms involved in the progression of non-alcoholic fatty liver disease (NAFLD) are complex and multifactorial. We investigated oxidative stress through the measurement of selenoprotein P (SeP) in serum and we explored its relation to metabolic derangements and liver damage in a group of non-diabetic NAFLD subjects. Methods: 57 NAFLD patients underwent a double-tracer oral glucose tolerance test (OGTT). Insulin resistance (IR) components were calculated at baseline as follows: hepatic-IR = (endogenous glucose production*insulin); peripheral-IR = (glucose rate of disappearance(Rd)); adipose-tissue(AT)-IR as Lipo-IR = (glycerol rate of appearance (Ra)*insulin) or AT-IR = (free fatty acids (FFAs)*insulin). The lipid and amino acid (AA) profiles were assessed by gas chromatography-mass spectrometry. SeP levels were measured by enzyme immunosorbent assay. Results: Circulating SeP correlated with insulin (rS = 0.28), FFAs (rS = 0.42), glucose Rd (rS = -0.33) and glycerol Ra (rS = -0.34); consistently, SeP levels correlated with Lipo-IR and AT-IR (rS > 0.4). Among the AA and lipid profiles, SeP inversely correlated with serine (rS = -0.31), glycine (rS = -0.44) and branched chain AA (rS = -0.32), and directly correlated with saturated (rS = 0.41) and monounsaturated FFAs (rS = 0.40). Hepatic steatosis and fibrosis increased in subjects with higher levels of SeP. In multivariable regression analysis, SeP was associated with the degree of hepatic fibrosis (t = 2.4, p = 0.022). Conclusions: SeP levels were associated with an altered metabolic profile and to the degree of hepatic fibrosis, suggesting a role in the pathogenesis of NAFLD.
Assuntos
Ácidos Graxos/sangue , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Selenoproteína P/metabolismo , Adulto , Feminino , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Selenoproteína P/sangueRESUMO
Selenoprotein P (SeP), a member of hepatokines, is involved in the development of various metabolic diseases closely related to psoriasis, but it has not been explored in that dermatosis so far. The study aimed to evaluate the clinical value of serum SeP concentrations in patients with psoriasis and its interplay between disease activity, metabolic or inflammatory parameters and systemic therapy. The study included thirty-three patients with flared plaque-type psoriasis and fifteen healthy volunteers. Blood samples were collected before and after three months of treatment with methotrexate or acitretin. Serum SeP levels were evaluated using the immune-enzymatic method. SeP concentration was significantly higher in patients with psoriasis than in the controls (p < 0.05). Further, in patients with severe psoriasis, SeP was significantly increased, compared with the healthy volunteers before treatment, and significantly decreased after (p < 0.05, p = 0.041, respectively). SeP positively correlated with C-reactive protein and platelets and negatively with red blood counts (p = 0.008, p = 0.013, p = 0.022, respectively). Therapy resulted in a significant decrease in SeP level. Selenoprotein P may be a novel indicator of inflammation and the metabolic complications development in psoriatics, especially with severe form or with concomitant obesity. Classic systemic therapy has a beneficial effect on reducing the risk of comorbidities by inhibiting SeP.
Assuntos
Biomarcadores/sangue , Síndrome Metabólica/diagnóstico , Psoríase/complicações , Selenoproteína P/sangue , Adulto , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Índice de Gravidade de DoençaRESUMO
PURPOSE: The association of complex dietary patterns with circulating selenoprotein P (SELENOP) levels in humans is unknown. In a general population sample, we aimed to identify a dietary pattern explaining inter-individual variation in circulating SELENOP concentrations and to study this pattern in relation to prevalent diabetes, metabolic syndrome (MetS), MRI-determined total volumes of visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, and liver signal intensity/fatty liver disease. METHODS: In this cross-sectional study, serum SELENOP levels were measured in 853 individuals. In a subsample of 553 participants, whole-body MRI was performed to assess body fat distribution and liver fat. Dietary intake was assessed by a self-administered food frequency questionnaire and the dietary pattern identified using reduced-rank regression (RRR). Multivariable linear and logistic regressions were used to investigate associations between dietary pattern score and metabolic traits. RESULTS: Characterized by high intake of fruit, vegetables and antioxidant beverages, the RRR-derived dietary pattern displayed inverse associations with VAT, SAT, MetS, and prevalent diabetes in multivariable-adjusted restricted cubic splines. Each unit increase in dietary pattern score was associated with 31% higher SELENOP levels, 12% lower VAT (95% CI: - 19%; - 5%), 13% (95% CI: - 20%; - 6%) lower SAT values and 46% (95% CI: 27%; 60%) and 53% (95% CI: 22%; 72%) lower odds of having MetS or diabetes, respectively. No meaningful relations were observed between the dietary pattern and liver traits. CONCLUSIONS: Our observations propose diet-related regulation in SELENOP levels and that the identified dietary pattern is inversely related to VAT, SAT, MetS, and prevalent diabetes.
Assuntos
Tecido Adiposo/diagnóstico por imagem , Diabetes Mellitus/sangue , Dieta/métodos , Fígado Gorduroso/sangue , Imageamento por Ressonância Magnética/métodos , Síndrome Metabólica/sangue , Selenoproteína P/sangue , Gordura Abdominal/diagnóstico por imagem , Idoso , Estudos de Coortes , Estudos Transversais , Fígado Gorduroso/diagnóstico por imagem , Fígado Gorduroso/fisiopatologia , Feminino , Humanos , Fígado/fisiopatologia , Masculino , Pessoa de Meia-IdadeRESUMO
A hepatokine is a collective term for liver-derived secretory factors whose previously-unrecognized functions have been recently elucidated. We have rediscovered selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2) as hepatokines that are involved in the development of insulin resistance and hyperglycemia. The aim of this study was to determine whether and, if so, how oral glucose loading alters the two hepatokines in humans. We measured concentrations of serum SeP and plasma LECT2 during 75 g oral glucose tolerance test (OGTT) (n = 20) in people with various degrees of glucose tolerance. In OGTT, concentrations of both serum SeP and plasma LECT2 decreased at 120 min compared with the baseline values, irrespective of the severity of glucose intolerance. Decrement of serum SeP during OGTT showed no correlations to the clinical parameters associated with insulin resistance or insulin secretion. In multiple stepwise regression analyses, plasma cortisol was selected as the variable to explain the changes in plasma concentrations of LECT2. The current data reveal the acute inhibitory actions of oral intake of glucose on circulating SeP and LECT2 in humans, irrespective of the severity of glucose intolerance. This study suggests that circulating SeP is regulated by the unknown clinical factors other than insulin and glucose during OGTT.
Assuntos
Diabetes Mellitus Tipo 2/sangue , Resistência à Insulina/fisiologia , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Selenoproteína P/sangue , Idoso , Glicemia , Feminino , Glucose/administração & dosagem , Intolerância à Glucose , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Selenoprotein P (SELENOP) is a major selenoenzyme in plasma and linked to antioxidant properties and possibly to lung cancer; however, supporting evidence is limited. We investigated the association between pre-diagnostic plasma SELENOP concentration and lung cancer risk in a case-control study of 403 cases and 403 individually matched controls nested within the Shanghai Men's Health Study. SELENOP concentration in pre-diagnostic plasma samples was measured by a sandwich enzyme-linked immunosorbent assay. Cases were diagnosed with lung cancer between 2003 and 2010. Multivariate conditional logistic regression was used to estimate odds ratios (OR) and the corresponding 95% confidence intervals (CI) for studying the association between plasma SELENOP concentration and lung cancer risk. Cases had slightly lower plasma SELENOP concentration than controls (4.3 ± 1.2 versus 4.4 ± 1.1 mg/l, P difference = 0.09). However, the multivariate analysis showed no association between plasma SELENOP concentration and lung cancer risk among all participants (OR = 1.08, 95% CI = 0.54-2.14 for quartile 4 versus quartile 1), or by smoking status or tumor aggressiveness. In contrast, although the number of cases was limited, plasma SELENOP concentration was positively associated with lung adenocarcinoma risk (OR = 5.38, 95% CI = 1.89-15.35 for tertile 3 versus tertile 1), but not with squamous cell lung carcinoma (OR = 1.69, 95% CI = 0.43-6.70). Our study of adult men living in selenium non-deficient areas in China provides little support for the inverse association between pre-diagnostic plasma SELENOP concentration and lung cancer risk. Our finding of a positive association with risk of lung adenocarcinoma needs to be interpreted with caution.
Assuntos
Adenocarcinoma de Pulmão/sangue , Neoplasias Pulmonares/sangue , Saúde do Homem/estatística & dados numéricos , Neoplasias de Células Escamosas/sangue , Selênio/sangue , Selenoproteína P/sangue , Adenocarcinoma de Pulmão/epidemiologia , Adulto , Idoso , Estudos de Casos e Controles , China/epidemiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Logísticos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias de Células Escamosas/epidemiologia , Estudos Prospectivos , Risco , Fumar/efeitos adversosRESUMO
Selenoprotein P (SePP) is involved in the protection against diseases. The present study is the first investigation of the effect of selenium supplementation on plasma selenium and expression of SEPP1 in mRNA and protein levels based on metabolic syndrome (MetS), in individuals suffering from coronary artery diseases. In this clinical trial, 160 patients with angiographically documented stenosis of more than 75% in each vessel were enrolled. Patients received either 200-mg selenium yeast tablets or placebo tablets orally after a meal, once daily for 60 days. The mRNA and protein levels of the selenium and SePP1 products were determined before and after the study. From the initial 160 participants, 145 subjects (71 MetS-affected individuals, 74 MetS-unaffected individuals) enrolled in this study. Comparing the selenium and placebo groups, no significant percentage changes of plasma selenium, â³Ct SEPP1, or SePP were shown (P > 0.05). Moreover, beyond a significant difference for the expression of SePP in the selenium group compared to its baseline level (P < 0.05), no other significant differences were revealed for plasma selenium and â³Ct SEPP1 after the intervention in either group (P > 0.05). Selenium supplementation did not affect plasma selenium or the mRNA or protein level of SePP in either groups after a 2-months intervention beyond a significant increase of SePP in the MetS group. This trial suggests that further studies should investigate the long-term use of selenium supplementation and the effect of a SePP increase on MetS as a potential therapeutic effect.
Assuntos
Doença da Artéria Coronariana/dietoterapia , Suplementos Nutricionais , Síndrome Metabólica/dietoterapia , RNA Mensageiro/genética , Selênio/administração & dosagem , Selenoproteína P/genética , Adulto , Angiografia Coronária , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico por imagem , Síndrome Metabólica/genética , Pessoa de Meia-Idade , RNA Mensageiro/sangue , Selênio/sangue , Selenoproteína P/sangueRESUMO
PURPOSE: Preclinical studies performed in our laboratory have shown that high-dose selenium inhibits the development of carboplatin drug resistance in an ovarian cancer mouse xenograft model. Based on these data, as well as the potential serious toxicities of supranutritional doses of selenium, a phase I trial of a combination of selenium/carboplatin/paclitaxel was designed to determine the maximum tolerated dose, safety, and effects of selenium on carboplatin pharmacokinetics in the treatment of chemo-naive women with gynecologic cancers. Correlative studies were performed to identify gene targets of selenium. METHODS: Chemo-naïve patients with gynecologic malignancy received selenious acid IV on day 1 followed by carboplatin IV and paclitaxel IV on day 3. A standard 3â¯+â¯3 dose-escalating design was used for addition of selenium to standard dose chemotherapy. Concentrations of selenium in plasma and carboplatin in plasma ultrafiltrate were analyzed. RESULTS: Forty-five patients were enrolled and 291 treatment cycles were administered. Selenium was administered as selenious acid to 9 cohorts of patients with selenium doses ranging from 50⯵g to 5000⯵g. Grade 3/4 toxicities included neutropenia (66.7%), febrile neutropenia (2.2%), pain (20.0%), infection (13.3%), neurologic (11.1%), and pulmonary adverse effects (11.1%). The maximum tolerated dose of selenium was not reached. Selenium had no effect on carboplatin pharmacokinetics. Correlative studies showed post-treatment downregulation of RAD51AP1, a protein involved in DNA repair, in both cancer cell lines and patient tumors. CONCLUSION: Overall, the addition of selenium to carboplatin/paclitaxel chemotherapy is safe and well tolerated, and does not alter carboplatin pharmacokinetics. A 5000⯵g dose of elemental selenium as selenious acid is suggested as the dose to be evaluated in a phase II trial.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/administração & dosagem , Carboplatina/farmacocinética , Linhagem Celular Tumoral , Neutropenia Febril Induzida por Quimioterapia/etiologia , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/sangue , Humanos , Infecções/induzido quimicamente , Pneumopatias/induzido quimicamente , Dose Máxima Tolerável , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/induzido quimicamente , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Proteínas de Ligação a RNA , Critérios de Avaliação de Resposta em Tumores Sólidos , Ácido Selenioso/administração & dosagem , Ácido Selenioso/farmacocinética , Selênio/sangue , Selenoproteína P/sangueRESUMO
Selenoprotein P (SeP) is a selenium (Se)-rich extracellular protein. SeP is identified as a hepatokine, causing insulin resistance in type 2 diabetes. Thus, the measurement of SeP in serum has received much attention, and several enzyme-linked immunosorbent assay (ELISA) kits for SeP determination are now commercially available. In the present study, we determined the serum SeP levels by our original ELISA and sol particle homogeneous immunoassay (SPIA) methods and also by commercially available kits, and these determinants were compared. We found a kit-dependent correlation of the determinants with our methods. These results suggest that the selection of kit is critical for comparison with our previous reports and for discussing the relationship between the serum SeP levels and disease condition.
Assuntos
Imunoensaio/métodos , Selenoproteína P/sangue , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Selenoprotein P (SeP) is involved in transporting selenium from the liver to target tissues. Because SeP confers protection against disease by reducing chronic oxidative stress, the present study aimed to assess the level of SeP in the serum of patients with metabolic syndrome (MetS) with a history of cardiovascular disease (CVD). METHODS: A cross-sectional study was conducted in 63 and 71 subjects with and without MetS in the presence of documented CVD. All demographic, anthropometric and cardiometabolic variables (lipids, blood glucose, blood pressure) were assessed. Lifestyle-related factors and personal history and familial CVD risk factors were recorded. The expression of SELP in mRNA and protein levels in the serum was measured, and MetS was determined using ATPIII criteria. Binary logistic regression analysis demonstrated MetS and SeP to be dependent and independent variables, respectively. RESULTS: Mean of systolic and diastolic blood pressure, triglyceride, high-density lipoprotein-cholesterol, fasting blood sugar, body mass index and waist circumference were higher among subjects with MetS (p = 0.05). The mean of selenium was higher among subjects with MetS, whereas the mean of SeP was lower among subjects with MetS (p < 0.001). In the unadjusted model, the SeP had decreased odds for MetS [odds ratio (OR) = 0.995; 95% confidence interval (CI) = 0.989-1.00] (p < 0.04). Furthermore, the association between MetS and SeP levels remained marginally significant even after adjusting for potential confounders such as age, gender, family history, smoking status and nutrition. SeP and waist circumference show a significant relationship (OR =0.995; 95% CI = 0.990-1.00) (p < 0.033). CONCLUSIONS: We have demonstrated a significant decrease in circulating SeP levels according to MetS status in patients with documented cardiovascular disease.
Assuntos
Doenças Cardiovasculares/complicações , Suscetibilidade a Doenças , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Selenoproteína P/genética , Adulto , Idoso , Biomarcadores , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Humanos , Irã (Geográfico)/epidemiologia , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Regressão , Selenoproteína P/sangue , Selenoproteína P/metabolismo , Avaliação de SintomasRESUMO
There is an obvious need to diagnose hepatocellular carcinoma using novel non-invasive and sensitive biomarkers. In this regard, the aim of this study was to evaluate and correlate both relative quantification of microRNA-7 using quantitative real time polymerase chain reaction and quantitative analysis of selenoprotein P using enzyme-linked immunosorbent assay in sera of hepatocellular carcinoma patients, chronic liver disease patients, as well as normal healthy subjects in order to establish a new diagnostic biomarker with a valid non-invasive technique. In addition, this study aimed to investigate whether changes in selenium supply affect microRNA-7 expression and selenoprotein P levels in human hepatocarcinoma cell line (HepG2). The results showed a highly significant decrease in serum microRNA-7 relative quantification values and selenoprotein P levels in malignant group in comparison with benign and control groups. The best cutoff for serum microRNA-7 and selenoprotein P to discriminate hepatocellular carcinoma group from benign and control groups was 0.06 and 4.30 mg/L, respectively. Furthermore, this study showed that changes in selenium supply to HepG2 cell line can alter the microRNA-7 profile and are paralleled by changes in the concentration of its target protein (selenoprotein P). Hence, serum microRNA-7 and selenoprotein P appear to be potential non-invasive diagnostic markers for hepatocellular carcinoma. Moreover, the results suggest that selenium could be used as an anticancer therapy for hepatocellular carcinoma by affecting both microRNA-7 and selenoprotein P.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , MicroRNAs/biossíntese , Selenoproteína P/sangue , Adulto , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Selênio/uso terapêuticoRESUMO
A novel strategy for the absolute quantification of selenium (Se) included in selenoprotein P (SEPP1), an important biomarker for human nutrition and disease, including diabetes and cancer, is presented here for the first time. It is based on the use of species-specific double isotope dilution mass spectrometry (SSIDA) in combination with HPLC-ICP-MS/MS for the determination of protein bound Se down to the peptide level in a complex plasma matrix with a total content of Se of 105.5 µg kg(-1). The method enabled the selective Se speciation analysis of human plasma samples without the need of extensive cleanup or preconcentration steps as required for traditional protein mass spectrometric approaches. To assess the method accuracy, two plasma reference materials, namely, BCR-637 and SRM1950, for which literature data and a reference value for SEPP1 have been reported, were analyzed using complementary hyphenated methods and the species-specific approach developed in this work. The Se mass fractions obtained via the isotopic ratios (78)Se/(76)Se and (82)Se/(76)Se for each of the Se-peptides, namely, ENLPSLCSUQGLR (ENL) and AEENITESCQUR (AEE) (where U is SeCys), were found to agree within 2.4%. A relative expanded combined uncertainty (k = 2) of 5.4% was achieved for a Se (as SEPP1) mass fraction of approximately 60 µg kg(-1). This work represents a systematic approach to the accurate quantitation of plasma SEPP1 at clinical levels using SSIDA quantification. Such methodology will be invaluable for the certification of reference materials and the provision of reference values to clinical measurements and clinical trials.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/química , Selênio/química , Selenoproteína P/sangue , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Humanos , Técnicas de Diluição do Indicador , Isótopos/química , Limite de Detecção , Selenoproteína P/análiseRESUMO
Selenium is regulated in the body to maintain vital selenoproteins and to avoid toxicity. When selenium is limiting, cells utilize it to synthesize the selenoproteins most important to them, creating a selenoprotein hierarchy in the cell. The liver is the central organ for selenium regulation and produces excretory selenium forms to regulate whole-body selenium. It responds to selenium deficiency by curtailing excretion and secreting selenoprotein P (Sepp1) into the plasma at the expense of its intracellular selenoproteins. Plasma Sepp1 is distributed to tissues in relation to their expression of the Sepp1 receptor apolipoprotein E receptor-2, creating a tissue selenium hierarchy. N-terminal Sepp1 forms are taken up in the renal proximal tubule by another receptor, megalin. Thus, the regulated whole-body pool of selenium is shifted to needy cells and then to vital selenoproteins in them to supply selenium where it is needed, creating a whole-body selenoprotein hierarchy.