Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982166

RESUMO

Aphids, mainly distributed in temperate zones, exhibit seasonal generation-alternating phenomena. Across the life cycle, different morphs are produced. Sitobion avenae (Fabricius 1775) is a major pest of wheat worldwide. To elucidate olfactory perception of morph-specific behavior across their life cycle, we investigated antennal sensilla among seven morphs using scanning electron microscopy. Trichoid, placoid, coeloconic, and campaniform sensilla were identified. Trichoid sensilla, big multiporous placoid sensilla (primary rhinarium), a group of sensilla (primary rhinaria), and campaniform sensilla showed similar distribution and resemblance among morphs, whereas small multiporous placoid sensilla (secondary rhinaria) exhibited obvious differences. Compared to apterous morphs, alate morphs possessed a greater abundance of secondary rhinaria, with the greatest found in males on antennal segments III-V. Alate virginoparae and alate sexuparae ranged from six to fourteen rhinaria on antennal segment III. Fundatrices, apterous virginoparae and apterous sexuparae only had one or two secondary rhinaria on antennal segment III while they disappeared in oviparae. Secondary rhinaria, lying in a cuticle cavity, are convex or concave in their central part. In males, both forms were present, with a greater proportion of convex form than that of the concave form. Fundatrices and virginoparae had the convex form while sexuparae had the concave form. Polyphenism of secondary rhinaria might suggest their association with the olfactory functions of morph-specific behavior. These results have improved our understanding of the adaptive evolution of the antennal sensilla in nonhost-alternating, holocyclic aphids.


Assuntos
Afídeos , Antenas de Artrópodes , Sensilas , Animais , Afídeos/anatomia & histologia , Afídeos/genética , Antenas de Artrópodes/anatomia & histologia , Estágios do Ciclo de Vida , Masculino , Microscopia Eletrônica de Varredura , Percepção Olfatória , Sensilas/anatomia & histologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33386944

RESUMO

Theraphosid tarantulas are large spiders that bear dense hairy adhesive pads on the distal parts of their legs: scopula and claw tufts. These structures allow them to climb on vertical smooth surfaces and contribute to prey capture. While adult females and juveniles remain most of the time in their burrows, adult males actively walk searching for females during the reproductive period. Adhesion and locomotion thus play important roles in the ecology and reproduction of these animals. In this paper, we review the current state of the knowledge on adhesion and locomotion in tarantulas, focusing on functional and evolutionary morphology.


Assuntos
Extremidades/fisiologia , Locomoção/fisiologia , Sensilas/fisiologia , Aranhas/fisiologia , Animais , Extremidades/anatomia & histologia , Feminino , Masculino , Sensilas/anatomia & histologia , Aranhas/anatomia & histologia
3.
Dev Genes Evol ; 230(2): 121-136, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036445

RESUMO

Spiders are equipped with a large number of innervated cuticular specializations, which respond to various sensory stimuli. The physiological function of mechanosensory organs has been analysed in great detail in some model spider species (e.g. Cupiennius salei); however, much less is known about the distribution and function of chemosensory organs. Furthermore, our knowledge on how the sense organ pattern develops on the spider appendages is limited. Here we analyse the development of the pattern and distribution of six different external mechano- and chemosensory organs in all postembryonic stages and in adult male and female spiders of the species Parasteatoda tepidariorum. We show that except for small mechanosensory setae, external sense organs appear in fixed positions on the pedipalps and first walking legs, arranged in longitudinal rows along the proximal-distal axis or in invariable positions relative to morphological landmarks (joints, distal tarsal tip). A comparison to other Entelegynae spiders shows that these features are conserved. We hope that this study lays the foundation for future molecular analysis to address the question how this conserved pattern is generated.


Assuntos
Extremidades/crescimento & desenvolvimento , Órgãos dos Sentidos/crescimento & desenvolvimento , Sensilas/anatomia & histologia , Sensilas/crescimento & desenvolvimento , Aranhas/crescimento & desenvolvimento , Animais , Extremidades/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Fêmur/crescimento & desenvolvimento , Masculino , Metatarso/anatomia & histologia , Metatarso/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Órgãos dos Sentidos/anatomia & histologia , Sensilas/ultraestrutura , Aranhas/anatomia & histologia , Tíbia/anatomia & histologia , Tíbia/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-33098446

RESUMO

This study examined electrophysiological responses of the Australian budworm moth Helicoverpa punctigera, to heliothine sex pheromone components, via single sensillum recordings (SSR), and examined male neuroanatomy using confocal microscopy and 3D imaging tools. We found that male H. punctigera have three distinct regions of the macroglomerular complex (MGC) in the antennal lobe. Male antennae have only two functional types of sensilla trichoidea (A and C) and type A sensilla contain an olfactory sensory neuron (OSN) that responds to the major sex pheromone component (Z)-11-hexadecenal (Z11-16:Ald) with axons projecting to the cumulus of the macroglomerular complex (MGC) in the antennal lobe. Type C sensilla contained large-spiking receptor neurons which responded primarily to (Z)-9-tetradecenal (Z9-14:Ald) and to a lesser degree to (Z)-11-hexadecenol (Z11-16:OH). These were co-compartmentalized with small-spiking receptor neurons in type C sensilla which responded strongly to Z9-14:Ald and (Z)-9-hexadecenal (Z9-16:Ald), and to a lesser degree to (Z)-11-hexadecenyl acetate (Z11-16:OAc) and Z11-16:OH. Axons from the two co-localized neurons in Type C sensilla projected to the two small MGC units, the dorsomedial anterior and dorsomedial posterior, respectively. In wind tunnel assays, the addition of Z9-16:Ald to an otherwise attractive blend completely shut down male H. punctigera upwind flight.


Assuntos
Comportamento Animal/fisiologia , Mariposas/anatomia & histologia , Mariposas/fisiologia , Sensilas/fisiologia , Células Receptoras Sensoriais/fisiologia , Atrativos Sexuais/metabolismo , Animais , Eletrofisiologia , Mariposas/metabolismo , Sensilas/anatomia & histologia , Células Receptoras Sensoriais/citologia , Atrativos Sexuais/análise
5.
Mol Phylogenet Evol ; 140: 106573, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374259

RESUMO

Mygalomorph spiders of the family Theraphosidae, known to the broader public as tarantulas, are among the most recognizable arachnids on earth due to their large size and widespread distribution. Their use of urticating setae is a notable adaptation that has evolved exclusively in certain New World theraphosids. Thus far, the evolutionary history of Theraphosidae remains poorly understood; theraphosid systematics still largely relies on morphological datasets, which suffer from high degrees of homoplasy, and traditional Sanger sequencing of preselected genes failed to provide strong support for supra-generic clades. In this study, we provide the first robust phylogenetic hypothesis of theraphosid evolution inferred from transcriptome data. A core ortholog approach was used to generate a phylogeny from 2460 orthologous genes across 25 theraphosid genera, representing all of the major theraphosid subfamilies, except Selenogyrinae. Our phylogeny recovers an unprecedented monophyletic group that comprises the vast majority of New World theraphosid subfamilies including Aviculariinae, Schismatothelinae and Theraphosinae. Concurrently, we provide additional evidence for the integrity of questionable subfamilies, such as Poecilotheriinae and Psalmopoeinae, and support the non-monophyly of Ischnocolinae. The deeper relationships between almost all subfamilies are confidently inferred. We also used our phylogeny in tandem with published morphological data to perform ancestral state analyses on urticating setae, and contextualize our reconstructions with emphasis on the complex evolutionary history of the trait.


Assuntos
Filogenia , Sensilas/anatomia & histologia , Aranhas/anatomia & histologia , Aranhas/genética , Transcriptoma/genética , Animais , Funções Verossimilhança , Sensilas/ultraestrutura , Aranhas/classificação
6.
Proc Natl Acad Sci U S A ; 113(49): 14091-14096, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27911792

RESUMO

A major aim of sociogenomic research is to uncover common principles in the molecular evolution of sociality. This endeavor has been hampered by the small number of specific genes currently known to function in social behavior. Here we provide several lines of evidence suggesting that ants have evolved a large and novel clade of odorant receptor (OR) genes to perceive hydrocarbon-based pheromones, arguably the most important signals in ant communication. This genomic expansion is also mirrored in the ant brain via a corresponding expansion of a specific cluster of glomeruli in the antennal lobe. We show that in the clonal raider ant, hydrocarbon-sensitive basiconic sensilla are found only on the ventral surface of the female antennal club. Correspondingly, nearly all genes in a clade of 180 ORs within the 9-exon subfamily of ORs are expressed exclusively in females and are highly enriched in expression in the ventral half of the antennal club. Furthermore, we found that across species and sexes, the number of 9-exon ORs expressed in antennae is tightly correlated with the number of glomeruli in the antennal lobe region innervated by odorant receptor neurons from basiconic sensilla. Evolutionary analyses show that this clade underwent a striking gene expansion in the ancestors of all ants and slower but continued expansion in extant ant lineages. This evidence suggests that ants have evolved a large clade of genes to support pheromone perception and that gene duplications have played an important role in the molecular evolution of ant communication.


Assuntos
Comunicação Animal , Formigas/genética , Evolução Molecular , Receptores Odorantes/genética , Sensilas/anatomia & histologia , Animais , Formigas/anatomia & histologia , Formigas/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Receptores Odorantes/metabolismo , Sensilas/metabolismo
7.
An Acad Bras Cienc ; 91(1): e20180047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30994756

RESUMO

The fourth instar larva and pupa of Dasyhelea flavifrons Guérin-Méneville are redescribed, illustrated, and photomicrographed using binocular, phase-contrast, and scanning electron microscopy. Comparisons with the American species of the grisea group were made. The immatures were collected by using a siphon bottle in tree-holes and from water collected in dead snail shells in Salta Province, Argentina, transported to the laboratory and there bred to the emergence of the adults. Details on larval habitats are given. These are the first records from Argentina and in gastrotelmata.


Assuntos
Ceratopogonidae/anatomia & histologia , Ceratopogonidae/fisiologia , Ecossistema , Larva/anatomia & histologia , Larva/fisiologia , Pupa/anatomia & histologia , Pupa/fisiologia , Animais , Argentina , Feminino , Masculino , Microscopia Eletrônica de Varredura , Sensilas/anatomia & histologia , Sensilas/fisiologia , Especificidade da Espécie
8.
J Insect Sci ; 19(6)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782508

RESUMO

True setae borne on the abdominal tergites of Ochrogaster lunifer Herrich-Schӓffer caterpillars are the agents of an irritating contact dermatitis, osteomyelitis, ophthalmia, and severe allergic reactions in humans, and are the cause of Equine Amnionitis and Fetal Loss in Australia. The setae are detached and readily dislodge from the integument whereby they disperse throughout the environment. To better understand the true setae of O. lunifer as agents of medical and veterinary concern, we studied their characteristics and distance dispersed. Whereas members of the European Thaumetopoeinae have been widely studied, their southern-hemisphere counterparts such as O. lunifer are not well known despite their harmfulness and known medical and veterinary importance. The caterpillar's investment in true setae increased with age and size, and two distinct size classes co-occurred in setae fields. A previously undescribed morphological type of true seta was found on the first abdominal segment. All true setae were calculated to travel long distances in the air even under light breeze conditions. Our results show there is a high risk of exposure to airborne urticating setae within 100 m of elevated caterpillar activity, and a likely risk of exposure for some kilometers in the direction of the prevailing breeze. This information should be used to inform management strategies in areas where urticating processionary caterpillars are active, and especially during periods of an outbreak.


Assuntos
Dermatite de Contato/etiologia , Larva/anatomia & histologia , Modelos Biológicos , Mariposas/anatomia & histologia , Sensilas/anatomia & histologia , Variação Anatômica , Animais , Humanos
9.
Parasitol Res ; 117(4): 959-970, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427157

RESUMO

The haematophagous females of the cleg fly Haematopota pandazisi (Kröber) (Diptera: Tabanidae) are a common pest in areas inhabited by wild and domestic ungulates in southern Europe, North Africa and Anatolia. A morphological investigation by scanning electron microscopy (SEM) was carried out for the first time on the antennae of females of H. pandazisi, with special attention to the type and distribution of sensilla and microtrichia. The typical brachyceran antenna is divided into three regions: the scape, the pedicel and the flagellum, which is the longest of the three and is composed of four flagellomeres. The scape and pedicel are characterized by only one type of microtrichium and chaetic sensillum, whereas five types of microtrichia and sensilla were identified on the flagellum and classified according to shape and distribution. The sensilla are of the chaetic, clavate, basiconic, trichoid and coeloconic types; the latter with either a basiconic or grooved peg inside. The results obtained in this study were compared to those found in other species in the family Tabanidae and other Diptera, with special attention to haematophagous species.


Assuntos
Dípteros/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Sensilas/ultraestrutura , Animais , Animais Domésticos/parasitologia , Membrana Celular/ultraestrutura , Europa (Continente) , Feminino , Sensilas/anatomia & histologia
10.
Cell Tissue Res ; 368(1): 29-46, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28032186

RESUMO

Despite thermosensation being crucial in effective thermoregulation behaviour, it is poorly studied in insects. Very little is known about encoding of noxious high temperatures by peripheral thermoreceptor neurons. In carabids, thermo- and hygrosensitive neurons innervate antennal dome-shaped sensilla (DSS). In this study, we demonstrate that several essential fine structural features of dendritic outer segments of the sensory neurons in the DSS and the classical model of insect thermo- and hygrosensitive sensilla differ fundamentally. Here, we show that spike bursts produced by the bimodal dry neurons in the antennal DSS may contribute to the sensation of noxious heat in P. oblongopunctatus. Our electrophysiological experiments showed that, at temperatures above 25 °C, these neurons switch from humidity-dependent regular spiking to temperature-dependent spike bursting. Five out of seven measured parameters of the bursty spike trains, the percentage of bursty dry neurons, the CV of ISIs in a spike train, the percentage of bursty spikes, the number of spikes in a burst and the ISIs in a burst, are unambiguously dependent on temperature and thus may precisely encode both noxious high steady temperatures up to 45 °C as well as rapid step-changes in it. The cold neuron starts to produce temperature-dependent spike bursts at temperatures above 30-35 °C. Thus, the two neurons encode different but largely overlapping ranges in noxious heat. The extent of dendritic branching and lamellation of the neurons largely varies in different DSS, which might be the structural basis for their variation in threshold temperatures for spike bursting.


Assuntos
Potenciais de Ação/fisiologia , Antenas de Artrópodes/fisiologia , Besouros/fisiologia , Temperatura Alta , Células Receptoras Sensoriais/fisiologia , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/ultraestrutura , Temperatura Baixa , Sensilas/anatomia & histologia , Sensilas/fisiologia , Sensilas/ultraestrutura
11.
J Evol Biol ; 30(6): 1094-1109, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28295793

RESUMO

Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems.


Assuntos
Acústica , Ortópteros , Filogenia , Animais , Evolução Biológica , Audição , Masculino , Ortópteros/anatomia & histologia , Ortópteros/fisiologia , Sensilas/anatomia & histologia , Sensilas/fisiologia
12.
Biol Lett ; 13(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28978757

RESUMO

Many ant and termite colonies are defended by soldiers with powerful mandibles or chemical weaponry. Recently, it was reported that several stingless bee species also have soldiers for colony defence. These soldiers are larger than foragers, but otherwise lack obvious morphological adaptations for defence. Thus, how these soldiers improve colony fitness is not well understood. Robbing is common in stingless bees and we hypothesized that increased body size improves the ability to recognize intruders based on chemosensory cues. We studied the Neotropical species Tetragonisca angustula and found that large soldiers were better than small soldiers at recognizing potential intruders. Larger soldiers also had more olfactory pore plates on their antennae, which is likely to increase their chemosensory sensitivity. Our results suggest that improved enemy recognition might select for increased guard size in stingless bees.


Assuntos
Abelhas/fisiologia , Comportamento de Nidação , Sensilas/anatomia & histologia , Agressão , Animais , Abelhas/anatomia & histologia , Tamanho Corporal , Olfato , Comportamento Social
13.
Microsc Microanal ; 22(4): 913-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27411894

RESUMO

Sensory structures (sensilla) of insects are present in high number in the antennae are important for perceiving environmental cues. Thus, sensilla play an important role in the localization, discrimination, and acceptance of a possible host by parasitoid insects. The sensilla, classified according to their shape, size, and distribution, may also show sexual dimorphism in insects. The types and distribution of antennal sensilla in female and male parasitoid Trichospilus pupivorus (Ferriere, 1930) (Hymenoptera: Eulophidae) were evaluated. T. pupivorus females had longer antennae than males. Both males and females have ten sensilla types with higher abundance of placoid sensilla in females, which suggest a possible functional dimorphism.


Assuntos
Himenópteros/anatomia & histologia , Himenópteros/fisiologia , Caracteres Sexuais , Animais , Feminino , Masculino , Sensilas/anatomia & histologia
14.
Mol Ecol ; 24(22): 5561-72, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26441383

RESUMO

Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist.


Assuntos
Drosophila melanogaster/genética , Variação Genética , Característica Quantitativa Herdável , Sensilas/anatomia & histologia , Animais , Drosophila melanogaster/anatomia & histologia , Feminino , Genótipo , Masculino , Fenótipo , Locos de Características Quantitativas , Asas de Animais/anatomia & histologia
15.
J Med Entomol ; 52(4): 614-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26335467

RESUMO

Infection of tsetse fly with trypanosome parasites could be influenced by its ability to locate vertebrate host(s) in the wild. Generally, the antennae of insects are known to bear chemo-sensory organs (sensilla), which are used for host search among other functions. In order to exploit the potentials of tsetse-search behavior, knowledge of sensilla types on the antennae is desirable. In line with this, the dorsal and ventral surfaces of the antennae of Glossina palpalis and Glossina tachinoides (Westwood) were examined under the scanning electron microscope. Results showed that trichoid and chaetica (subtypes I and II) sensilla are present only on the scape and pedicel, while basiconica (subtypes I and II) and sensory pits are seen on the flagella. Microtrichia are present on all the segments of the antennae with Ca II being most abundant. Specifically, in females of G. tachinoides, there is a near-even distribution of Ca I and Ca II on the pedicel while more number of sensory pits was seen on females than males in both species. This study hypothesizes that host-search efficiency could be influenced by the number of olfactory-sensilla types on the antennae, in which case, females present greater potentials.


Assuntos
Antenas de Artrópodes/anatomia & histologia , Glossinidae/anatomia & histologia , Sensilas/anatomia & histologia , Animais , Antenas de Artrópodes/ultraestrutura , Feminino , Glossinidae/ultraestrutura , Masculino , Microscopia Eletrônica de Varredura , Níger , Nigéria , Sensilas/ultraestrutura
16.
J Med Entomol ; 52(4): 626-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26335469

RESUMO

Scanning electron microscopy was used to examine the external morphology of first-, second-, and third-instar stable flies (Stomoxys calcitrans (L.)). In the cephalic region, the antennae, labial lobe, and maxillary palpi are morphologically similar among instars. Antennae comprise a prominent anterior dome that is the primary site of olfaction, while the maxillary palpi are innervated with mechano- and chemosensilla and scolopodia. The ventral organ and facial mask, also located in the pseudocephalon, are not well-developed in first instars, but become progressively more so in the subsequent instars. When the pseudocephalon is partially retracted, anterior spines cusp around the oral ridges of the facial mask. This indicates the anterior spinose band may be used in conjunction with the facial mask in predigestion. Functional anterior spiracles are absent on first instars, but become evident as a pair of palmate spiracular processes with five to seven lobes in second and third instars. A pair of Keilin's organs, functioning as hygroreceptors, is located on each thoracic segment. Abdominal segments are marked with ventral creeping welts, the anal pad, anus, papillae, and posterior spiracles. Ventral creeping welts are thought to aid in locomotion, while the anal pad acts as an osmoregulatory structure. Posterior spiracles are modified from round spiracular discs with two straight slits in the first instar to triangular discs with two and three sinuous slits in the second and third instars, respectively.


Assuntos
Larva/anatomia & histologia , Larva/ultraestrutura , Muscidae/anatomia & histologia , Muscidae/ultraestrutura , Animais , Microscopia Eletrônica de Varredura , Sensilas/anatomia & histologia , Sensilas/ultraestrutura
17.
Proc Biol Sci ; 281(1775): 20132334, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24285195

RESUMO

The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures.


Assuntos
Evolução Biológica , Fricção , Lagartos/anatomia & histologia , Animais , Fenômenos Biomecânicos , Lagartos/classificação , Microscopia Eletrônica de Varredura , Sensilas/anatomia & histologia , Sensilas/ultraestrutura , Pele/anatomia & histologia , Pele/ultraestrutura
18.
J Exp Biol ; 217(Pt 11): 1946-54, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24871922

RESUMO

Female insects of diverse orders bore into substrates to deposit their eggs. Such insects must overcome several biomechanical challenges to successfully oviposit, which include the selection of suitable substrates through which the ovipositor can penetrate without itself fracturing. In many cases, the insect may also need to steer and manipulate the ovipositor within the substrate to deliver eggs at desired locations before rapidly retracting her ovipositor to avoid predation. In the case of female parasitoid ichneumonid wasps, this process is repeated multiple times during her lifetime, thus testing the ability of the ovipositioning apparatus to endure fracture and fatigue. What specific adaptations does the ovipositioning apparatus of a female ichneumonoid wasp possess to withstand these challenges? We addressed this question using a model system composed of parasitoid and pollinator fig wasps. First, we show that parasitoid ovipositor tips have teeth-like structures, preferentially enriched with zinc, unlike the smooth morphology of pollinator ovipositors. We describe sensillae present on the parasitoid ovipositor tip that are likely to aid in the detection of chemical species and mechanical deformations and sample microenvironments within the substrate. Second, using atomic force microscopy, we show that parasitoid tip regions have a higher modulus compared with regions proximal to the abdomen in parasitoid and pollinator ovipositors. Finally, we use videography to film wasps during substrate boring and analyse buckling of the ovipositor to estimate the forces required for substrate boring. Together, these results allow us to describe the biomechanical principles underlying substrate boring in parasitoid ichneumonid wasps. Such studies may be useful for the biomimetic design of surgical tools and in the use of novel mechanisms to bore through hard substrates.


Assuntos
Oviposição/fisiologia , Vespas/anatomia & histologia , Vespas/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Feminino , Ficus/parasitologia , Sensilas/anatomia & histologia , Especificidade da Espécie , Vespas/ultraestrutura
19.
Naturwissenschaften ; 101(8): 603-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24861136

RESUMO

The sensilla of insects are integumental units that play a role as sensory structures and are crucial for the perception of stimuli and for communication. In this study, we compared the antennal sensilla of females (workers and queens), males (haploid (n) and diploid (2n)), and queen-like males (QLMs, resulting from 2n males after juvenile hormone (JH) treatment) in the stingless bee Melipona quadrifasciata. Images of the dorsal antenna surfaces were acquired using a scanning electron microscope. As reported for other hymenopterans, this species exhibits a heterogeneous sensillar distribution along the antennae. Thirteen different types of sensilla were found in the antennae of M. quadrifasciata: trichodea (subtypes I to VI), chaetica (subtypes I and II), placodea, basiconica, ampullacea, coeloconica, and coelocapitula. Sensilla trichodea I were the most abundant, followed by sensilla placodea, which might function in olfactory perception. Sensilla basiconica, sensilla chaetica I, sensilla coeloconica, and sensilla ampullacea were found exclusively in females. In terms of the composition and size of the sensilla, the antennae of QLMs most closely resemble those of the 2n male, although QLMs exhibit a queen phenotype. This study represents the first comparative analysis of the antennal sensilla of M. quadrifasciata. The differences found in the type and amount of sensilla between the castes and sexes are discussed based on the presumed sensillary functions.


Assuntos
Himenópteros , Sensilas/anatomia & histologia , Animais , Feminino , Masculino , Sensilas/fisiologia , Olfato
20.
Arch Insect Biochem Physiol ; 86(2): 122-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24782249

RESUMO

In Lepidoptera, choosing the right site for egg laying is particularly important, because the small larvae cannot forage for alternate host plants easily. Some secondary compounds of plants have the ability to deter oviposition behaviors of insects. Rhodojaponin-III, a botanical compound, has been reported to have intense deterring-oviposition activity against many insects, which have important implications for agricultural pest management. This study provided evidence for elucidating the perception mechanism underlying Rhodojaponin-III as oviposition deterrent. In this study, the antennas of moths could not elicit notable electroantennogram responses to Rhodojaponin-III, which suggested the Rhodojaponin-III could not exert effects like those volatile compounds. The results of physiological experiments confirmed the Rhodojaponin-III could produce the oviposition deterrence effect against moths without depending on antennas, while the physical contact was essential for perceiving the compound, which suggested that the sensilla on tarsus and ovipositor could be chemoreceptor for Rhodojaponin-III. Therefore, these sensilla were investigated by scanning electron microscopy to explore their potential functions in detecting Rhodojaponin-III. This study highlighted the contacting mechanism in deterring oviposition behaviors of moths by Rhodojaponin-III and provided new insight for development of contact-based pest management.


Assuntos
Diterpenos/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/fisiologia , Quimiotaxia , Diterpenos/metabolismo , Fenômenos Eletrofisiológicos , Extremidades/anatomia & histologia , Extremidades/fisiologia , Feminino , Repelentes de Insetos/farmacologia , Masculino , Microscopia Eletrônica de Varredura , Percepção Olfatória , Oviposição/efeitos dos fármacos , Sensilas/anatomia & histologia , Sensilas/fisiologia , Spodoptera/anatomia & histologia , Spodoptera/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA