Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.631
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 66(5): 721-728.e3, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552617

RESUMO

A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability.


Assuntos
Bacteriófago T7/genética , DNA Bacteriano/genética , DNA Viral/genética , Escherichia coli/genética , Vetores Genéticos , Klebsiella pneumoniae/genética , Shigella sonnei/genética , Transdução Genética/métodos , Vírion , DNA Bacteriano/biossíntese , DNA Viral/biossíntese , Escherichia coli/metabolismo , Escherichia coli/virologia , Regulação Bacteriana da Expressão Gênica , Regulação Viral da Expressão Gênica , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/virologia , Shigella sonnei/metabolismo , Shigella sonnei/virologia
2.
J Infect Dis ; 230(4): e971-e984, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38853614

RESUMO

BACKGROUND: We report data from stage 1 of an ongoing 2-staged, phase 1/2 randomized clinical trial with a 4-component generalized modules for membrane antigens-based vaccine against Shigella sonnei and Shigella flexneri 1b, 2a, and 3a (altSonflex1-2-3; GSK). METHODS: Europeans aged 18-50 years (N = 102) were randomized (2:1) to receive 2 injections of altSonflex1-2-3 or placebo at 3- or 6-month interval. Safety and immunogenicity were assessed at prespecified time points. RESULTS: The most common solicited administration-site event (until 7 days after each injection) and unsolicited adverse event (until 28 days after each injection) were pain (altSonflex1-2-3, 97.1%; placebo, 58.8%) and headache (32.4%; 23.5%), respectively. All serotype-specific functional IgG antibodies peaked 14-28 days after injection 1 and remained substantially higher than prevaccination at 3 or 6 months postvaccination; the second injection did not boost but restored the initial immune response. The highest seroresponse rates (≥4-fold increase in titers over baseline) were obtained against S. flexneri 2a (enzyme-linked immunosorbent assay [ELISA] after injection 1, 91.0%; after injection 2 [day 113; day 197], 100%; 97.0% and serum bactericidal activity [SBA] after injection 1, 94.4%; after injection 2, 85.7%; 88.9%) followed by S. sonnei (ELISA after injection 1, 77.6%; after injection 2, 84.6%; 78.8% and SBA after injection 1, 83.3%; after injection 2, 71.4%; 88.9%). Immune responses against S. flexneri 1b and S. flexneri 3a, as measured by both ELISA and SBA, were numerically lower compared to those against S. sonnei and S. flexneri 2a. CONCLUSIONS: No safety signals or concerns were identified. altSonflex1-2-3 induced functional serotype-specific immune responses, allowing further clinical development in the target population. Clinical Trials Registration . NCT05073003.


Assuntos
Anticorpos Antibacterianos , Disenteria Bacilar , Imunoglobulina G , Vacinas contra Shigella , Shigella flexneri , Shigella sonnei , Humanos , Adulto , Vacinas contra Shigella/imunologia , Vacinas contra Shigella/efeitos adversos , Vacinas contra Shigella/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Anticorpos Antibacterianos/sangue , Shigella sonnei/imunologia , Shigella flexneri/imunologia , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/imunologia , Imunoglobulina G/sangue , Europa (Continente) , Antígenos de Bactérias/imunologia , Imunogenicidade da Vacina , Voluntários Saudáveis
3.
EMBO J ; 39(10): e102922, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32337752

RESUMO

Although multiprotein membrane complexes play crucial roles in bacterial physiology and virulence, the mechanisms governing their quality control remain incompletely understood. In particular, it is not known how unincorporated, orphan components of protein complexes are recognised and eliminated from membranes. Rhomboids, the most widespread and largest superfamily of intramembrane proteases, are known to play key roles in eukaryotes. In contrast, the function of prokaryotic rhomboids has remained enigmatic. Here, we show that the Shigella sonnei rhomboid proteases GlpG and the newly identified Rhom7 are involved in membrane protein quality control by specifically targeting components of respiratory complexes, with the metastable transmembrane domains (TMDs) of rhomboid substrates protected when they are incorporated into a functional complex. Initial cleavage by GlpG or Rhom7 allows subsequent degradation of the orphan substrate. Given the occurrence of this strategy in an evolutionary ancient organism and the presence of rhomboids in all domains of life, it is likely that this form of quality control also mediates critical events in eukaryotes and protects cells from the damaging effects of orphan proteins.


Assuntos
Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Shigella sonnei/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Endopeptidases/química , Domínios Proteicos , Proteólise , Shigella sonnei/metabolismo , Especificidade por Substrato
4.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376387

RESUMO

The mammalian colon is one of the most densely populated habitats currently recognised, with 1011-1013 commensal bacteria per gram of colonic contents. Enteric pathogens must compete with the resident intestinal microbiota to cause infection. Among these enteric pathogens are Shigella species which cause approximately 125 million infections annually, of which over 90 % are caused by Shigella flexneri and Shigella sonnei. Shigella sonnei was previously reported to use a Type VI Secretion System (T6SS) to outcompete E. coli and S. flexneri in in vitro and in vivo experiments. S. sonnei strains have also been reported to harbour colicinogenic plasmids, which are an alternative anti-bacterial mechanism that could provide a competitive advantage against the intestinal microbiota. We sought to determine the contribution of both T6SS and colicins to the anti-bacterial killing activity of S. sonnei. We reveal that whilst the T6SS operon is present in S. sonnei, there is evidence of functional degradation of the system through SNPs, indels and IS within key components of the system. We created strains with synthetically inducible T6SS operons but were still unable to demonstrate anti-bacterial activity of the T6SS. We demonstrate that the anti-bacterial activity observed in our in vitro assays was due to colicin activity. We show that S. sonnei no longer displayed anti-bacterial activity against bacteria that were resistant to colicins, and removal of the colicin plasmid from S. sonnei abrogated anti-bacterial activity of S. sonnei. We propose that the anti-bacterial activity demonstrated by colicins may be sufficient for niche competition by S. sonnei within the gastrointestinal environment.


Assuntos
Colicinas , Shigella sonnei , Animais , Shigella sonnei/genética , Escherichia coli/genética , Bactérias , Conteúdo Gastrointestinal , Mamíferos
5.
J Antimicrob Chemother ; 79(1): 55-60, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37965757

RESUMO

OBJECTIVES: To utilize long-read nanopore sequencing (R10.4.1 flowcells) for WGS of a cluster of MDR Shigella sonnei, specifically characterizing genetic predictors of antimicrobial resistance (AMR). METHODS: WGS was performed on S. sonnei isolates identified from stool and blood between September 2021 and October 2022. Bacterial DNA from clinical isolates was extracted on the MagNA Pure 24 and sequenced on the GridION utilizing R10.4.1 flowcells. Phenotypic antimicrobial susceptibility testing was interpreted based on CLSI breakpoints. Sequencing data were processed with BugSeq, and AMR was assessed with BugSplit and ResFinder. RESULTS: Fifty-six isolates were sequenced, including 53 related to the cluster of cases. All cluster isolates were identified as S. sonnei by sequencing, with global genotype 3.6.1.1.2 (CipR.MSM5), MLST 152 and PopPUNK cluster 3. Core genome MLST (cgMLST, examining 2513 loci) and reference-based MLST (refMLST, examining 4091 loci) both confirmed the clonality of the isolates. Cluster isolates were resistant to ampicillin (blaTEM-1), trimethoprim/sulfamethoxazole (dfA1, dfrA17; sul1, sul2), azithromycin (ermB, mphA) and ciprofloxacin (gyrA S83L, gyrA D87G, parC S80I). No genomic predictors of resistance to carbapenems were identified. CONCLUSIONS: WGS with R10.4.1 enabled rapid sequencing and identification of an MDR S. sonnei community cluster. Genetic predictors of AMR were concordant with phenotypic antimicrobial susceptibility testing.


Assuntos
Disenteria Bacilar , Sequenciamento por Nanoporos , Nanoporos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Shigella sonnei/genética , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Disenteria Bacilar/microbiologia , Farmacorresistência Bacteriana/genética
6.
Appl Environ Microbiol ; 90(8): e0098824, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39082807

RESUMO

Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.


Assuntos
Antígenos de Bactérias , Epitopos de Linfócito B , Shigella flexneri , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Animais , Camundongos , Shigella flexneri/imunologia , Shigella flexneri/genética , Epitopos de Linfócito B/imunologia , Vacinas contra Shigella/imunologia , Vacinas contra Shigella/administração & dosagem , Vacinas contra Shigella/genética , Disenteria Bacilar/prevenção & controle , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Camundongos Endogâmicos BALB C , Mapeamento de Epitopos , Feminino , Shigella/imunologia , Shigella/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Shigella sonnei/imunologia , Shigella sonnei/genética , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/genética
7.
Epidemiol Infect ; 152: e115, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363593

RESUMO

We reviewed all diagnoses of Shigella species notified to the UK Health Security Agency from January 2016 to March 2023. An overall increase in notifications of shigellosis was seen between 2016 (n = 415/quarter) and 2023 (n = 1 029/quarter). However, notifications dramatically declined between March 2020 and September 2021 during the COVID-19 pandemic (n = 208/quarter) highlighting the impact of travel and social distancing restrictions on transmission. S. sonnei diagnoses were more affected by lockdown restrictions than S. flexneri, most likely due to a combination of species-specific characteristics and host attributes. Azithromycin resistance continued to be associated with epidemics of sexually transmissible S. flexneri (adult males = 45.6% vs. adult females = 8.7%) and S. sonnei (adult males = 59.5% vs. adult females = 14.6%). We detected resistance to ciprofloxacin in S. sonnei from adult male cases not reporting travel at a higher frequency (79.4%) than in travel-associated cases (61.7%). Extensively drug-resistant Shigella species associated with sexual transmission among men almost exclusively had ESBL encoded by blaCTX-M-27, whereas those associated with returning travellers had blaCTX-M-15. Given the increasing incidence of infections and AMR, we recommend that enhanced surveillance is used to better understand the impact of travel and sexual transmission on the acquisition and spread of MDR and XDR Shigella species.


Assuntos
Disenteria Bacilar , Humanos , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Inglaterra/epidemiologia , Idoso , Adulto Jovem , Criança , Pré-Escolar , Lactente , COVID-19/epidemiologia , COVID-19/transmissão , Notificação de Doenças/estatística & dados numéricos , Idoso de 80 Anos ou mais , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Shigella/efeitos dos fármacos , Viagem/estatística & dados numéricos , Recém-Nascido , Shigella sonnei/efeitos dos fármacos , Shigella flexneri/efeitos dos fármacos , Shigella flexneri/isolamento & purificação
8.
Indian J Med Res ; 160(1): 87-94, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39382492

RESUMO

Background & objectives Food and waterborne illnesses remain a neglected public health issue in India. Events with large gatherings frequently witness outbreaks of acute diarrheal diseases due to consumption of contaminated food or water or poor food handling practices. In the present study, an outbreak of acute diarrhoeal disease (ADD) occurring among the attendees of a birthday party in rural Dibrugarh district in the northeastern Indian State of Assam was investigated. Methods Sociodemographic information along with details of ADD outbreak that included information about source of foods, food handlers, illness details, etc., were collected using an outbreak investigation form for descriptive and analytical epidemiology. Rectal swabs from affected individuals and food handlers were collected along with bore-well water samples and tested in the laboratory by performing bacterial culture, biochemical analysis and polymerase chain reaction. Due to the delayed report on the outbreak, collecting leftover food for laboratory testing and analysis was impossible. Results A total of 25 cases of ADD had similar signs and symptoms. The mean incubation period for developing acute diarrhoea was 26.36±8.76 (± standard deviation) hours from food consumption. The overall attack rate was 60.04 per cent (25/41); 20 per cent (5/25) required hospitalization. Thirteen rectal swab samples were tested for pathogens and found positive for Shigella sonnei. Antibiotic susceptibility test of isolated S. sonnei showed resistance to nalidixic acid, ciprofloxacin and cefotaxime. Consumption of one of the food items - chicken curry was significantly associated with illness (Odds Ratio=14.8; 95% Confidence Interval: 2.75-85.11); P value<0.05 and Population Attributable Fraction (PAF) was 70.18 per cent. The water samples were found satisfactory for human consumption. Interpretation & conclusions The findings suggested that S. sonnei infection could be implicated in the investigated food-borne diarrhoeal disease outbreak and that there was a potential for human-poultry cross-infection. Additionally, the study revealed concerning levels of S. sonnei resistance to recommended antibiotics and drew attention to their public health relevance.


Assuntos
Diarreia , Surtos de Doenças , Disenteria Bacilar , Shigella sonnei , Humanos , Shigella sonnei/patogenicidade , Shigella sonnei/isolamento & purificação , Índia/epidemiologia , Masculino , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Diarreia/microbiologia , Diarreia/epidemiologia , Feminino , Adulto , Adolescente , Pessoa de Meia-Idade , Criança , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Doença Aguda , Pré-Escolar
9.
Euro Surveill ; 29(31)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092530

RESUMO

BackgroundShigella is a leading cause of moderate-to-severe diarrhoea worldwide and diarrhoeal deaths in children in low- and-middle-income countries.AimWe investigated trends and characteristics of shigellosis and antimicrobial resistance of Shigella sonnei in Israel.MethodsWe analysed data generated by the Sentinel Laboratory-Based Surveillance Network for Enteric Pathogens that systematically collects data on detection of Shigella at sentinel laboratories, along with the characterisation of the isolates at the Shigella National Reference Laboratory. Trends in the shigellosis incidence were assessed using Joinpoint regression and interrupted time-series analyses.ResultsThe average incidence of culture-confirmed shigellosis in Israel declined from 114 per 100,000 population (95% confidence interval (CI): 112-115) 1998-2004 to 80 per 100,000 population (95% CI: 79-82) 2005-2011. This rate remained stable 2012-2019, being 18-32 times higher than that reported from the United States or European high-income countries. After decreasing to its lowest values during the COVID-19 pandemic years (19/100,000 in 2020 and 5/100,000 in 2021), the incidence of culture-confirmed shigellosis increased to 39 per 100,000 population in 2022. Shigella sonnei is the most common serogroup, responsible for a cyclic occurrence of propagated epidemics, and the proportion of Shigella flexneri has decreased. Simultaneous resistance of S. sonnei to ceftriaxone, ampicillin and sulphamethoxazole-trimethoprim increased from 8.5% (34/402) in 2020 to 92.0% (801/876) in 2022.ConclusionsThese findings reinforce the need for continuous laboratory-based surveillance and inform the primary and secondary prevention strategies for shigellosis in Israel and other endemic high-income countries or communities.


Assuntos
Antibacterianos , Disenteria Bacilar , Vigilância de Evento Sentinela , Shigella sonnei , Humanos , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Disenteria Bacilar/diagnóstico , Israel/epidemiologia , Criança , Pré-Escolar , Incidência , Adolescente , Lactente , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Feminino , Shigella sonnei/isolamento & purificação , Shigella sonnei/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Adulto Jovem , COVID-19/epidemiologia , SARS-CoV-2 , Testes de Sensibilidade Microbiana , Idoso , Diarreia/epidemiologia , Diarreia/microbiologia , Recém-Nascido , Farmacorresistência Bacteriana
10.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256189

RESUMO

Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.


Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Metilmetacrilatos , Vacinas , Humanos , Monócitos , Shigella sonnei/genética , Antígenos de Bactérias/genética
11.
Rev Argent Microbiol ; 56(3): 205-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845247

RESUMO

Multidrug-resistant Shigella sonnei ST152, global lineage III, is a high-risk clone, whose dissemination has limited therapeutic options for shigellosis. This study aimed to characterize two isolates of S. sonnei, which were recovered in Lima, Peru, during November 2019, exhibiting resistance to extended-spectrum cephalosporins and quinolones, and concurrently harboring blaCTX-M-15 and qnrS1 genes, in addition to mutations in gyrA-S83L. These isolates were resistant to ceftriaxone, ciprofloxacin and trimethoprim/sulfamethoxazole. The molecular analysis showed that both isolates belonged to lineage III, sublineages IIIa and IIIb. The blaCTX-M-15 gene was located in the same genetic platform as qnrS1, flanked upstream by ISKpn19, on a conjugative plasmid belonging to the IncI-γ group. To the best of our knowledge, this would be the first report on S. sonnei isolates carrying the blaCTX-M-15 gene in Peru. The global dissemination of S. sonnei ST152, co-resistant to ß-lactams and quinolones, could lead to a worrisome scenario in the event of potential acquisition of genetic resistance mechanisms to azithromycin.


Assuntos
Farmacorresistência Bacteriana Múltipla , Shigella sonnei , beta-Lactamases , Peru , Shigella sonnei/genética , Shigella sonnei/efeitos dos fármacos , Shigella sonnei/isolamento & purificação , Humanos , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Disenteria Bacilar/microbiologia , Antibacterianos/farmacologia
12.
Infect Immun ; 91(11): e0031623, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37795982

RESUMO

There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Shigella sonnei , Shigella flexneri , Diarreia , Viagem , Antígenos de Bactérias/genética , Pulmão , Toxinas Shiga , Imunoglobulina G , Imunoglobulina A , Anticorpos Antibacterianos , Disenteria Bacilar/prevenção & controle
14.
Emerg Infect Dis ; 29(8): 1708-1711, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486233

RESUMO

We report extensively drug-resistant (XDR) Shigella sonnei infection in an immunocompromised patient in Texas, USA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry failed to identify XDR Shigella, but whole-genome sequencing accurately characterized the strain. First-line antimicrobials are not effective against emerging XDR Shigella. Fosfomycin, carbapenems, and tigecycline are potential alternatives.


Assuntos
Anti-Infecciosos , Disenteria Bacilar , Shigella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Disenteria Bacilar/diagnóstico , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Testes de Sensibilidade Microbiana , Shigella sonnei/genética , Estados Unidos/epidemiologia
15.
Emerg Infect Dis ; 29(8): 1668-1671, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486309

RESUMO

Increased invasive bloodstream infections caused by multidrug resistant Shigella sonnei were noted in Vancouver, British Columbia, Canada, during 2021-2023. Whole-genome sequencing revealed clonal transmission of genotype 3.6.1.1.2 (CipR.MSM5) among persons experiencing homelessness. Improvements in identifying Shigella species, expanding treatment options for multidrug resistant infections, and developing public health partnerships are needed.


Assuntos
Bacteriemia , Disenteria Bacilar , Pessoas Mal Alojadas , Shigella , Humanos , Shigella sonnei/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colúmbia Britânica/epidemiologia , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Testes de Sensibilidade Microbiana
16.
J Antimicrob Chemother ; 78(4): 975-982, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36760088

RESUMO

BACKGROUND: Several countries have recently reported the detection of ESBL-producing Shigella sonnei associated with transmission among MSM. In a previous study by our group, 2.8% of Shigella spp. obtained from MSM in Barcelona between 2015 and 2019 were ESBL producers. OBJECTIVES: To describe and characterize the emerging ESBL-producing Shigella spp. associated with sexual transmission among MSM detected from 2020 to 2021 in Barcelona, elucidating their connectivity with contemporaneous ESBL-producing Shigella spp. from other countries. RESULTS: From 2020 to 2021, we identified that among MSM, 68% of S. sonnei were XDR harbouring blaCTX-M-27 and 14% of Shigella flexneri were MDR harbouring blaCTX-M-27. WGS analysis showed that the ESBL-producing S. sonnei were part of a monophyletic cluster, which included isolates responsible for the prolonged outbreak occurring in the UK. Our data also reveal the first emergence and clonal dissemination of ESBL-producing and fluoroquinolone-resistant S. flexneri 2a among MSM. CONCLUSIONS: We report an increasing trend of antimicrobial resistance in Shigella spp. among MSM in Barcelona since 2021, mainly as a consequence of the dissemination of XDR ESBL-producing S. sonnei, previously reported in the UK. These results highlight the importance of international collaborative surveillance of MDR/XDR S. sonnei and S. flexneri for rapid identification of their emergence and the prevention of the transmission of these pathogens.


Assuntos
Disenteria Bacilar , Minorias Sexuais e de Gênero , Shigella , Masculino , Humanos , Shigella flexneri , Shigella sonnei , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/tratamento farmacológico , Homossexualidade Masculina , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Surtos de Doenças
17.
Appl Environ Microbiol ; 89(12): e0107423, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032177

RESUMO

IMPORTANCE: Shigella sonnei is a major human enteric pathogen that causes bacillary dysentery. The increasing spread of drug-resistant S. sonnei strains has caused an emergent need for the development of new antimicrobial agents against this pathogenic bacterium. In this study, we demonstrate that Stattic employs two antibacterial mechanisms against S. sonnei. It exerted both anti-virulence activity and bactericidal activity against S. sonnei, suggesting that it shows advantages over traditional antibiotics. Moreover, Stattic showed excellent synergistic effects with kanamycin, ampicillin, chloramphenicol, and gentamicin against S. sonnei. Our findings suggest that Stattic has promising potential for development as a new antibiotic or as an adjuvant to antibiotics for infections caused by S. sonnei.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Shigella sonnei , Antibacterianos/farmacologia , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/microbiologia , Ampicilina/farmacologia , Testes de Sensibilidade Microbiana
18.
Foodborne Pathog Dis ; 20(4): 138-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37010405

RESUMO

Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 µL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 µL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 µmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 µL/mL in lettuce leaves and 6 µL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.


Assuntos
Litsea , Óleos Voláteis , Óleos Voláteis/farmacologia , Lactuca , Shigella sonnei , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
19.
J Bacteriol ; 204(3): e0051921, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34978459

RESUMO

Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCE Shigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.


Assuntos
Antitoxinas , Disenteria Bacilar , Sistemas Toxina-Antitoxina , Sequência de Aminoácidos , Antitoxinas/genética , Elementos de DNA Transponíveis , Disenteria Bacilar/microbiologia , Disenteria Bacilar/prevenção & controle , Humanos , Plasmídeos/genética , Shigella flexneri/genética , Shigella sonnei/genética , Sistemas Toxina-Antitoxina/genética , Virulência/genética
20.
Clin Infect Dis ; 74(3): 455-460, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33993224

RESUMO

BACKGROUND: In 2018, the Centers for Disease Control and Prevention and the Vermont Department of Health investigated an outbreak of multidrug-resistant Shigella sonnei infections in a retirement community that offered a continuum of care from independent living through skilled nursing care. The investigation identified 24 culture-confirmed cases. Isolates were resistant to trimethoprim-sulfamethoxazole, ampicillin, and ceftriaxone, and had decreased susceptibility to azithromycin and ciprofloxacin. METHODS: To evaluate clinical and microbiologic response, we reviewed inpatient and outpatient medical records for treatment outcomes among the 24 patients with culture-confirmed S. sonnei infection. We defined clinical failure as diarrhea (≥3 loose stools per day) for ≥1 day after treatment finished, and microbiologic failure as a stool culture that yielded S. sonnei after treatment finished. We used broth microdilution to perform antimicrobial susceptibility testing, and whole genome sequencing to identify resistance mechanisms. RESULTS: Isolates contained macrolide resistance genes mph(A) and erm(B) and had azithromycin minimum inhibitory concentrations above the Clinical and Laboratory Standards Institute epidemiological cutoff value of ≤16 µg/mL. Among 24 patients with culture-confirmed Shigella infection, 4 were treated with azithromycin; all had clinical treatment failure and 2 also had microbiologic treatment failure. Isolates were susceptible to ciprofloxacin but contained a gyrA mutation; 2 patients failed treatment with ciprofloxacin. CONCLUSIONS: These azithromycin treatment failures demonstrate the importance of clinical breakpoints to aid clinicians in identifying alternative treatment options for resistant strains. Additionally, these treatment failures highlight a need for comprehensive susceptibility testing and systematic outcome studies, particularly given the emergence of multidrug-resistant Shigella among an expanding range of patient populations.


Assuntos
Disenteria Bacilar , Shigella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Humanos , Macrolídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Aposentadoria , Shigella sonnei/genética , Resultado do Tratamento , Vermont
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA