Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.765
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 17(10): 1150-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548432

RESUMO

The innate immune system needs to distinguish between harmful and innocuous stimuli to adapt its activation to the level of threat. How Drosophila mounts differential immune responses to dead and live Gram-negative bacteria using the single peptidoglycan receptor PGRP-LC is unknown. Here we describe rPGRP-LC, an alternative splice variant of PGRP-LC that selectively dampens immune response activation in response to dead bacteria. rPGRP-LC-deficient flies cannot resolve immune activation after Gram-negative infection and die prematurely. The alternative exon in the encoding gene, here called rPGRP-LC, encodes an adaptor module that targets rPGRP-LC to membrane microdomains and interacts with the negative regulator Pirk and the ubiquitin ligase DIAP2. We find that rPGRP-LC-mediated resolution of an efficient immune response requires degradation of activating and regulatory receptors via endosomal ESCRT sorting. We propose that rPGRP-LC selectively responds to peptidoglycans from dead bacteria to tailor the immune response to the level of threat.


Assuntos
Proteínas de Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Microdomínios da Membrana/metabolismo , Pectobacterium carotovorum/imunologia , Isoformas de RNA/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons/genética , Técnicas de Inativação de Genes , Imunidade/genética , Imunomodulação , Proteínas Inibidoras de Apoptose/metabolismo , Ligação Proteica , Sinais Direcionadores de Proteínas/genética , Proteólise , Isoformas de RNA/genética , Relação Estrutura-Atividade
2.
EMBO J ; 41(23): e111344, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031863

RESUMO

Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a ß-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.


Assuntos
Dobramento de Proteína , Sinais Direcionadores de Proteínas , Sinais Direcionadores de Proteínas/genética , Proteínas/metabolismo , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas
3.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099298

RESUMO

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Ácido Aspártico Endopeptidases , Proteínas de Bactérias , Farmacorresistência Bacteriana , Furanos , Deleção de Genes , Lipoproteínas , Inibidores de Proteases , Piridinas , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Furanos/farmacologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Sinais Direcionadores de Proteínas/genética , Piridinas/farmacologia
4.
BMC Biotechnol ; 24(1): 34, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783306

RESUMO

BACKGROUND: Signal peptide (SP) engineering has proven able to improve production of many proteins yet is a laborious process that still relies on trial and error. mRNA structure around the translational start site is important in translation initiation and has rarely been considered in this context, with recent improvements in in silico mRNA structure potentially rendering it a useful predictive tool for SP selection. Here we attempt to create a method to systematically screen candidate signal peptide sequences in silico based on both their nucleotide and amino acid sequences. Several recently released computational tools were used to predict signal peptide activity (SignalP), localization target (DeepLoc) and predicted mRNA structure (MXFold2). The method was tested with Bone Morphogenetic Protein 2 (BMP2), an osteogenic growth factor used clinically for bone regeneration. It was hoped more effective BMP2 SPs could improve BMP2-based gene therapies and reduce the cost of recombinant BMP2 production. RESULTS: Amino acid sequence analysis indicated 2,611 SPs from the TGF-ß superfamily were predicted to function when attached to BMP2. mRNA structure prediction indicated structures at the translational start site were likely highly variable. The five sequences with the most accessible translational start sites, a codon optimized BMP2 SP variant and the well-established hIL2 SP sequence were taken forward to in vitro testing. The top five candidates showed non-significant improvements in BMP2 secretion in HEK293T cells. All showed reductions in secretion versus the native sequence in C2C12 cells, with several showing large and significant decreases. None of the tested sequences were able to increase alkaline phosphatase activity above background in C2C12s. The codon optimized control sequence and hIL2 SP showed reasonable activity in HEK293T but very poor activity in C2C12. CONCLUSIONS: These results support the use of peptide sequence based in silico tools for basic predictions around signal peptide activity in a synthetic biology context. However, mRNA structure prediction requires improvement before it can produce reliable predictions for this application. The poor activity of the codon optimized BMP2 SP variant in C2C12 emphasizes the importance of codon choice, mRNA structure, and cellular context for SP activity.


Assuntos
Proteína Morfogenética Óssea 2 , Sinais Direcionadores de Proteínas , RNA Mensageiro , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/química , Sinais Direcionadores de Proteínas/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/química , Sequência de Aminoácidos , Conformação de Ácido Nucleico , Biologia Computacional/métodos , Engenharia de Proteínas/métodos , Células HEK293
5.
Plant Physiol ; 194(1): 434-455, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37770073

RESUMO

Tandem direct repeat (TDR)-containing proteins, present across all domains of life, play crucial roles in plant development and defense mechanisms. Previously, we identified that disruption of a bryophyte-specific protein family, SHORT-LEAF (SHLF), possessing the longest reported TDRs, is the cause of the shlf mutant phenotype in Physcomitrium patens. shlf exhibits reduced apical dominance, altered auxin distribution, and 2-fold shorter leaves. However, the molecular role of SHLF was unclear due to the absence of known conserved domains. Through a series of protein domain deletion analyses, here, we demonstrate the importance of the signal peptide and the conserved TDRs and report a minimal functional protein (miniSHLF) containing the N-terminal signal peptide and first two TDRs (N-TDR1-2). We also demonstrate that SHLF behaves as a secretory protein and that the TDRs contribute to a pool of secreted peptides essential for SHLF function. Further, we identified that the mutant secretome lacks SHLF peptides, which are abundant in WT and miniSHLF secretomes. Interestingly, shlf mutants supplemented with the secretome or peptidome from WT or miniSHLF showed complete or partial phenotypic recovery. Transcriptomic and metabolomic analyses revealed that shlf displays an elevated stress response, including high ROS activity and differential accumulation of genes and metabolites involved in the phenylpropanoid pathway, which may affect auxin distribution. The TDR-specific synthetic peptide SHLFpep3 (INIINAPLQGFKIA) also rescued the mutant phenotypes, including the altered auxin distribution, in a dosage-dependent manner and restored the mutant's stress levels. Our study shows that secretory SHLF peptides derived from conserved TDRs regulate moss gametophore development.


Assuntos
Bryopsida , Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Ácidos Indolacéticos/metabolismo , Sequências Repetitivas de Ácido Nucleico , Sinais Direcionadores de Proteínas/genética
6.
Protein Expr Purif ; 222: 106521, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38852714

RESUMO

Plants are often seen as a potent tool in the recombinant protein production industry. However, unlike bacterial expression, it is not a popular method due to the low yield and difficulty of protein extraction and purification. Therefore, developing a new high efficient and easy to purify platform is crucial. One of the best approaches to make extraction easier is to utilize the Extensin Signal peptide (EXT) to translocate the recombinant protein to the outside of the cell, along with incorporating an Elastin-like polypeptide tag (ELP) to enhance purification and accumulation rates. In this research, we transiently expressed Shigella dysenteriae's IpaDSTxB fused to both NtEXT and ELP in both Nicotiana tabacum and Medicago sativa. Our results demonstrated that N. tabacum, with an average yield of 6.39 ng/µg TSP, outperforms M. sativa, which had an average yield of 3.58 ng/µg TSP. On the other hand, analyzing NtEXT signal peptide indicated that merging EXT to the constructs facilitates translocation of IpaDSTxB to the apoplast by 78.4% and 65.9% in N. tabacum and M. sativa, respectively. Conversely, the mean level for constructs without EXT was below 25% for both plants. Furthermore, investigation into the orientation of ELP showed that merging it to the C-terminal of IpaDSTxB leads to a higher accumulation rate in both N. tabacum and M. sativa by 1.39 and 1.28 times, respectively. It also facilitates purification rate by over 70% in comparison to 20% of the 6His tag. The results show a highly efficient and easy to purify platform for the expression of heterologous proteins in plant.


Assuntos
Proteínas de Bactérias , Elastina , Nicotiana , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão , Shigella dysenteriae , Nicotiana/genética , Nicotiana/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Elastina/genética , Elastina/química , Elastina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Shigella dysenteriae/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/química , Medicago sativa/microbiologia , Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Glicoproteínas/genética , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicoproteínas/biossíntese , Glicoproteínas/metabolismo , Polipeptídeos Semelhantes à Elastina
7.
Mol Cell Probes ; 74: 101956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492609

RESUMO

Utilization of fluorescent proteins is widespread for the study of microbial pathogenesis and host-pathogen interactions. Here, we discovered that linkage of the 36 N-terminal amino acids of FTL_0580 (a hypothetical protein of Francisella tularensis) to fluorescent proteins increases the fluorescence emission of bacteria that express these recombinant fusions. This N-terminal peptide will be referred to as 580N. Western blotting revealed that the linkage of 580N to Emerald Green Fluorescent Protein (EmGFP) in F. tularensis markedly improved detection of this protein. We therefore hypothesized that transcripts containing 580N may be translated more efficiently than those lacking the coding sequence for this leader peptide. In support, expression of emGFPFt that had been codon-optimized for F. tularensis, yielded significantly enhanced fluorescence than its non-optimized counterpart. Furthermore, fusing emGFP with coding sequence for a small N-terminal peptide (Serine-Lysine-Isoleucine-Lysine), which had previously been shown to inhibit ribosomal stalling, produced robust fluorescence when expressed in F. tularensis. These findings support the interpretation that 580N enhances the translation efficiency of fluorescent proteins in F. tularensis. Interestingly, expression of non-optimized 580N-emGFP produced greater fluorescence intensity than any other construct. Structural predictions suggested that RNA secondary structure also may be influencing translation efficiency. When expressed in Escherichia coli and Klebsiella pneumoniae bacteria, 580N-emGFP produced increased green fluorescence compared to untagged emGFP (neither allele was codon optimized for these bacteria). In conclusion, fusing the coding sequence for the 580N leader peptide to recombinant genes might serve as an economical alternative to codon optimization for enhancing protein expression in bacteria.


Assuntos
Francisella tularensis , Francisella tularensis/genética , Francisella tularensis/química , Francisella tularensis/metabolismo , Lisina/metabolismo , Peptídeos/genética , Códon/genética , Sinais Direcionadores de Proteínas/genética
8.
J Immunol ; 208(11): 2583-2592, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35534211

RESUMO

The monoallelic expression (allelic exclusion) of diverse lymphocyte Ag receptor genes enables specific immune responses. Allelic exclusion is achieved by asynchronous initiation of V(D)J recombination between alleles and protein encoded by successful rearrangement on the first allele signaling permanent inhibition of V rearrangement on the other allele. The ATM kinase that guides DNA repair and transiently suppresses V(D)J recombination also helps impose allelic exclusion through undetermined mechanisms. At the TCRß locus, one Vß gene segment (V31) rearranges only by inversion, whereas all other Vß segments rearrange by deletion except for rare cases in which they rearrange through inversion following V31 rearrangement. The poor-quality recombination signal sequences (RSSs) of V31 and V2 help establish TCRß gene repertoire and allelic exclusion by stochastically limiting initiation of Vß rearrangements before TCRß protein-signaled permanent silencing of Vß recombination. We show in this study in mice that ATM functions with these RSSs and the weak V1 RSS to shape TCRß gene repertoire by restricting their Vß segments from initiating recombination and hindering aberrant nonfunctional Vß recombination products, especially during inversional V31 rearrangements. We find that ATM collaborates with the V1 and V2 RSSs to help enforce allelic exclusion by facilitating competition between alleles for initiation and functional completion of rearrangements of these Vß segments. Our data demonstrate that the fundamental genetic DNA elements that underlie inefficient Vß recombination cooperate with ATM-mediated rapid DNA damage responses to help establish diversity and allelic exclusion of TCRß genes.


Assuntos
Sinais Direcionadores de Proteínas , Receptores de Antígenos de Linfócitos T alfa-beta , Alelos , Animais , Dano ao DNA , Reparo do DNA/genética , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/genética , Camundongos , Sinais Direcionadores de Proteínas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação V(D)J/genética
9.
Mol Biol Rep ; 51(1): 362, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403791

RESUMO

BACKGROUND: Pathogen-related proteins (PR) are pivotal in plant defense, combating diverse biotic and abiotic stresses. While multiple gene families contribute to banana resistance against Fusarium oxysporum f sp. cubense (Foc), Pseudocercospora eumusae, and Pratylenchus coffeae, the significance of PR-1 genes in defense is paramount. METHODS: Three PR-1 genes, up-regulated under diverse biotic stresses, were cloned from both resistant and susceptible cultivars of Foc, P. eumusae, and P. coffeae. Molecular characterization, phylogenetic analysis, and docking studies with the Foc TR4 CP gene were conducted. RESULTS: Through transcriptomic and real-time studies, three PR-1 genes (Ma02_g15050, Ma02_g15060, and Ma04_g34800) from Musa spp. were identified. These genes exhibited significant up-regulation in resistant cultivars when exposed to Foc, P. eumusae, and P. coffeae. Cloning of these genes was successfully performed from both resistant and susceptible cultivars of Foc race 1 and TR4, P. eumusae, and P. coffeae. Distinct characteristics were observed among the PR-1 genes, with groups 1 and 2 being acidic with signal peptides, and group 3 being basic without signal peptides. All cloned PR-1 proteins belonged to the CAP superfamily (PF00188). Phylogenetic analysis revealed clustering patterns for acidic PR-1 proteins, and KEGG orthology showed associations with vital pathways, including MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction. Secondary and tertiary structure analyses confirmed sequence conservation across studied species. Docking studies explored interactions between the cerato-platanin (CP) gene from Foc TR4 and Ma02_g15060 from banana, suggesting the potential hindrance of PR-1 antifungal activity through direct interaction. CONCLUSIONS: The findings underscore the crucial role of cloned PR-1 genes in banana plant defense mechanisms against a broad spectrum of biotic stresses. These genes, especially those in groups 1 and 2, hold promise as candidates for developing stress-tolerant banana cultivars. The study provides valuable insights into the molecular aspects of banana defense strategies, emphasizing the potential applications of PR-1 genes in enhancing banana resilience.


Assuntos
Fusarium , Musa , Musa/genética , Filogenia , Fusarium/genética , Clonagem Molecular , Sinais Direcionadores de Proteínas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
10.
Nucleic Acids Res ; 50(20): 11696-11711, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370096

RESUMO

In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.


Assuntos
Sinais Direcionadores de Proteínas , Recombinação V(D)J , Sinais Direcionadores de Proteínas/genética , Proteínas de Homeodomínio/metabolismo , Receptores de Antígenos/genética , Pirimidinas , Purinas
11.
Artigo em Inglês | MEDLINE | ID: mdl-38253396

RESUMO

Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY: Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.


Assuntos
Bacillus licheniformis , Glucosiltransferases , Neisseria , Bacillus licheniformis/metabolismo , Sinais Direcionadores de Proteínas/genética , Frutanos , Arginina , Proteínas de Bactérias/genética
12.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722426

RESUMO

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regiões Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinais Direcionadores de Proteínas/genética
13.
BMC Genomics ; 24(1): 730, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049721

RESUMO

BACKGROUND: Venom phospholipase D (PLDs), dermonecrotic toxins like, are the major molecules in the crude venom of scorpions, which are mainly responsible for lethality and dermonecrotic lesions during scorpion envenoming. The purpose of this study was fivefold: First, to identify transcripts coding for venom PLDs by transcriptomic analysis of the venom glands from Androctonus crassicauda, Hottentotta saulcyi, and Hemiscorpius lepturus; second, to classify them by sequence similarity to known PLDs and motif extraction method; third, to characterize scorpion PLDs; fourth to structural homology analysis with known dermonecrotic toxins; and fifth to investigate phylogenetic relationships of the PLD proteins. RESULTS: We found that the venom gland of scorpions encodes two PLD isoforms: PLD1 ScoTox-beta and PLD2 ScoTox-alpha I. Two highly conserved regions shared by all PLD1s beta are GAN and HPCDC (HX2PCDC), and the most important conserved regions shared by all PLD2s alpha are two copies of the HKDG (HxKx4Dx6G) motif. We found that PLD1 beta is a 31-43 kDa acidic protein containing signal sequences, and PLD2 alpha is a 128 kDa basic protein without known signal sequences. The gene structures of PLD1 beta and PLD2 alpha contain 6 and 21 exons, respectively. Significant structural homology and similarities were found between the modeled PLD1 ScoTox-beta and the crystal structure of dermonecrotic toxins from Loxosceles intermedia. CONCLUSIONS: This is the first report on identifying PLDs from A. crassicauda and H. saulcyi venom glands. Our work provides valuable insights into the diversity of scorpion PLD genes and could be helpful in future studies on recombinant antivenoms production.


Assuntos
Fosfolipase D , Venenos de Escorpião , Animais , Fosfolipase D/genética , Fosfolipase D/metabolismo , Escorpiões/genética , Filogenia , Isoformas de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
14.
Biochem Biophys Res Commun ; 666: 101-106, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37182284

RESUMO

Soluble proteins sorted through the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER) from the cytosol. However, a few proteins that lack a signal peptide are still translocated into the ER, such as SOD1. SOD1 is a causative gene of amyotrophic lateral sclerosis (ALS). A relationship has been suggested between the secretion of SOD1 and the pathogenesis of ALS; however, the transport mechanism of SOD1 remains unclear. We herein report that SOD1 was translocated into the ER lumen through the translocon Sec61 and was then secreted extracellularly. The present results indicate the potential of suppressing the secretion of SOD1 as a therapeutic target for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Via Secretória , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sinais Direcionadores de Proteínas/genética , Mutação
15.
Acta Neuropathol ; 145(5): 637-650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36879070

RESUMO

A missense variant from methionine to arginine at codon 232 (M232R) of the prion protein gene accounts for ~ 15% of Japanese patients with genetic prion diseases. However, pathogenic roles of the M232R substitution for the induction of prion disease have remained elusive because family history is usually absent in patients with M232R. In addition, the clinicopathologic phenotypes of patients with M232R are indistinguishable from those of sporadic Creutzfeldt-Jakob disease patients. Furthermore, the M232R substitution is located in the glycosylphosphatidylinositol (GPI)-attachment signal peptide that is cleaved off during the maturation of prion proteins. Therefore, there has been an argument that the M232R substitution might be an uncommon polymorphism rather than a pathogenic mutation. To unveil the role of the M232R substitution in the GPI-attachment signal peptide of prion protein in the pathogenesis of prion disease, here we generated a mouse model expressing human prion proteins with M232R and investigated the susceptibility to prion disease. The M232R substitution accelerates the development of prion disease in a prion strain-dependent manner, without affecting prion strain-specific histopathologic and biochemical features. The M232R substitution did not alter the attachment of GPI nor GPI-attachment site. Instead, the substitution altered endoplasmic reticulum translocation pathway of prion proteins by reducing the hydrophobicity of the GPI-attachment signal peptide, resulting in the reduction of N-linked glycosylation and GPI glycosylation of prion proteins. To the best of our knowledge, this is the first time to show a direct relationship between a point mutation in the GPI-attachment signal peptide and the development of disease.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Animais , Camundongos , Humanos , Proteínas Priônicas/genética , Mutação Puntual , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Sinais Direcionadores de Proteínas/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Príons/genética , Príons/metabolismo , Mutação/genética
16.
Microb Cell Fact ; 22(1): 203, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805580

RESUMO

BACKGROUND: Bacillus subtilis is one of the workhorses in industrial biotechnology and well known for its secretion potential. Efficient secretion of recombinant proteins still requires extensive optimization campaigns and screening with activity-based methods. However, not every protein can be detected by activity-based screening. We therefore developed a combined online monitoring system, consisting of an in vivo split GFP assay for activity-independent target detection and an mCherry-based secretion stress biosensor. The split GFP assay is based on the fusion of a target protein to the eleventh ß-sheet of sfGFP, which can complement a truncated sfGFP that lacks this ß-sheet named GFP1-10. The secretion stress biosensor makes use of the CssRS two component quality control system, which upregulates expression of mCherry in the htrA locus thereby allowing a fluorescence readout of secretion stress. RESULTS: The biosensor strain B. subtilis PAL5 was successfully constructed by exchanging the protease encoding gene htrA with mCherry via CRISPR/Cas9. The Fusarium solani pisi cutinase Cut fused to the GFP11 tag (Cut11) was used as a model enzyme to determine the stress response upon secretion mediated by signal peptides SPPel, SPEpr and SPBsn obtained from naturally secreted proteins of B. subtilis. An in vivo split GFP assay was developed, where purified GFP1-10 is added to the culture broth. By combining both methods, an activity-independent high-throughput method was created, that allowed optimization of Cut11 secretion. Using the split GFP-based detection assay, we demonstrated a good correlation between the amount of secreted cutinase and the enzymatic activity. Additionally, we screened a signal peptide library and identified new signal peptide variants that led to improved secretion while maintaining low stress levels. CONCLUSION: Our results demonstrate that the combination of a split GFP-based detection assay for secreted proteins with a secretion stress biosensor strain enables both, online detection of extracellular target proteins and identification of bottlenecks during protein secretion in B. subtilis. In general, the system described here will also enable to monitor the secretion stress response provoked by using inducible promoters governing the expression of different enzymes.


Assuntos
Bacillus subtilis , Técnicas Biossensoriais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Transporte Proteico , Proteínas Recombinantes , Sinais Direcionadores de Proteínas/genética , Proteínas de Bactérias/metabolismo
17.
Microb Cell Fact ; 22(1): 72, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062846

RESUMO

BACKGROUND: Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities. RESULTS: In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway. CONCLUSIONS: Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.


Assuntos
Cobre , Lacase , Lacase/genética , Lacase/metabolismo , Lignina/metabolismo , Streptomyces lividans/metabolismo , Sinais Direcionadores de Proteínas/genética , Escherichia coli/metabolismo
18.
Fish Shellfish Immunol ; 142: 109143, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827249

RESUMO

Pattern recognition receptors (PRRs) play a crucial role in the recognition and activation of innate immune responses against invading microorganisms. This study characterizes a novel C-type lectin (CTL), SpccCTL. The cDNA sequence of SpccCTL has a full length of 1744 bp encoding a 338-amino acid protein. The predicted protein contains a signal peptide, a coiled-coil (CC) domain, and a CLECT domain. It shares more than 50 % similarity with a few CTLs with a CC domain in crustaceans. SpccCTL is highly expressed in gills and hemocytes and upregulated after MCRV challenge, suggesting that it may be involved in antiviral immunity. Recombinant SpccCTL (rSpccCTL) as well as two capsid proteins of MCRV (VP11 and VP12) were prepared. Pre-incubating MCRV virions with rSpccCTL significantly suppresses the proliferation of MCRV in mud crabs, compared with the control (treatment with GST protein), and the survival rate of mud crabs is also significantly decreased. Knockdown of SpccCTL significantly facilitates the proliferation of MCRV in mud crabs. These results reveal that SpccCTL plays an important role in antiviral immune response. GST pull-down assay result shows that rSpccCTL interacts specifically with VP11, but not to VP12. This result is further confirmed by a Co-IP assay. In addition, we found that silencing SpccCTL significantly inhibits the expression of four antimicrobial peptides (AMPs). Considering that these AMPs are members of anti-lipopolysaccharide factor family with potential antiviral activity, they are likely involved in immune defense against MCRV. Taken together, these findings clearly demonstrate that SpccCTL can recognize MCRV by binding viral capsid protein VP11 and regulate the expression of certain AMPs, suggesting that SpccCTL may function as a potential PRR playing an essential role in anti-MCRV immunity of mud crab. This study provides new insights into the antiviral immunity of crustaceans and the multifunctional characteristics of CTLs.


Assuntos
Braquiúros , Animais , Proteínas de Transporte/genética , Proteínas Virais/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Imunidade Inata/genética , Sinais Direcionadores de Proteínas/genética , Proteínas de Artrópodes , Filogenia
19.
Fish Shellfish Immunol ; 133: 108527, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621705

RESUMO

Cathepsin L is widely found in eukaryotes and prokaryotes, and it plays important roles in innate immunity. In the present study, we cloned two cathepsin L genes (designated as MmCTSL1 and MmCTSL2, respectively) from Asiatic hard clam (Meretrix meretrix). The complete sequence of MmCTSL1 cDNA contained a 5' untranslated region (UTR) of 31 bp, a 3' UTR of 228 bp with a poly (A) tail, and an open reading frame (ORF) of 1005 bp encoding 334 amino acids with predicted molecular weight of 37.5 kDa and theoretical isoelectric point of 5.27, and contained a signal peptide (from M1 to A16), a protease inhibitor I29 family domain (from W27 to F87), and a papain family cysteine protease domain (from L118 to T333). The complete sequence of MmCTSL2 cDNA contained a 5' UTR of 50 bp, a 3' UTR of 162 bp with a poly (A) tail, and an ORF of 996 bp encoding a polypeptide of 331 amino acids with predicted molecular weight of 36.8 kDa and theoretical isoelectric point of 7.07. It contained a signal peptide (from M1 to A16), a protease inhibitor I29 family domain (from W30 to F89), and a papain family cysteine protease domain (from L115 to T330). Real-time quantitative PCR analysis demonstrated that MmCTSL1 and MmCTSL2 were widely expressed in all the tested tissues, including adductor muscle, foot, gill, hemocytes, hepatopancreas and mantle, with the highest mRNA expression level in hepatopancreas and hemocytes, respectively. After Vibrio splendidus challenge, the mRNA expression levels of MmCTSL1 and MmCTSL2 in hemocytes and hepatopancreas were both significantly up-regulated with different expression profiles. In hemocytes, the expression levels of MmCTSL1 and MmCTSL2 reached their respective peaks (3.4-fold and 13.0-fold compared with the control, respectively) at 12 h after bacterial challenge, and MmCTSL2 responds earlier than MmCTSL1. In hepatopancreas, the expression levels of MmCTSL1 and MmCTSL2 reached their respective peaks at 6 h (9.0-fold compared with the control) and 24 h (2.8-fold compared with the control) after bacterial challenge, meaning that MmCTSL1 responds earlier than MmCTSL2. At the same time, whether in hepatopancreas or hemocytes, MmCTSL1 persist for a while after the bacterial challenge peak, while MmCTSL2 would quickly return to the initial level after the bacterial challenge peak. These results indicate that cathepsin L may be involved in the immune process of hard clam against V. splendidus with different potential roles.


Assuntos
Anti-Infecciosos , Bivalves , Animais , Sequência de Aminoácidos , Sequência de Bases , Alinhamento de Sequência , DNA Complementar/genética , DNA Complementar/metabolismo , Regiões 3' não Traduzidas , Catepsina L/genética , Papaína/genética , Papaína/metabolismo , Sinais Direcionadores de Proteínas/genética , Filogenia , Clonagem Molecular
20.
Nat Rev Mol Cell Biol ; 12(5): 333-40, 2011 05.
Artigo em Inglês | MEDLINE | ID: mdl-21487438

RESUMO

The signal hypothesis, formulated by Günter Blobel and David Sabatini in 1971, and elaborated by Blobel and his colleagues between 1975 and 1980, fundamentally expanded our view of cells by introducing the concept of topogenic signals. Cells were no longer just morphological entities with compartmentalized biochemical functions; they were now active participants in the creation and perpetuation of their own form and identity, the decoders of linear genetic information into three dimensions.


Assuntos
Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas/genética , Sinais Direcionadores de Proteínas/genética , Ribossomos/metabolismo , Modelos Genéticos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA