RESUMO
Effective antiviral protection in multicellular organisms relies on both cell-autonomous and systemic immunity. Systemic immunity mediates the spread of antiviral signals from infection sites to distant uninfected tissues. In arthropods, RNA interference (RNAi) is responsible for antiviral defense. Here, we show that flies have a sophisticated systemic RNAi-based immunity mediated by macrophage-like haemocytes. Haemocytes take up dsRNA from infected cells and, through endogenous transposon reverse transcriptases, produce virus-derived complementary DNAs (vDNA). These vDNAs template de novo synthesis of secondary viral siRNAs (vsRNA), which are secreted in exosome-like vesicles. Strikingly, exosomes containing vsRNAs, purified from haemolymph of infected flies, confer passive protection against virus challenge in naive animals. Thus, similar to vertebrates, insects use immune cells to generate immunological memory in the form of stable vDNAs that generate systemic immunity, which is mediated by the vsRNA-containing exosomes.
Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Hemócitos/imunologia , Sindbis virus/fisiologia , Imunidade Adaptativa , Animais , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Exossomos/metabolismo , Hemócitos/efeitos dos fármacos , Hemócitos/virologia , Memória Imunológica , Interferência de RNA , RNA Viral/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa/efeitos dos fármacos , Sindbis virus/genética , Zidovudina/farmacologiaRESUMO
The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.
Assuntos
Infecções por Alphavirus/imunologia , Interferons/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Sindbis virus/fisiologia , Infecções por Alphavirus/genética , Retroalimentação Fisiológica , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , RNA/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Replicação ViralRESUMO
Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.
Assuntos
Mosquitos Vetores , Vírus da Floresta de Semliki , Animais , Proteínas Relacionadas a Receptor de LDL , Ligantes , Camundongos , Receptores de LDL , Vírus da Floresta de Semliki/metabolismo , Sindbis virus/fisiologiaRESUMO
Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.
Assuntos
Infecções por Alphavirus , Antígenos de Superfície , Proteínas Ligadas por GPI , Acetiltransferases N-Terminal , Sindbis virus , Replicação Viral , Humanos , Infecções por Alphavirus/genética , Antígenos de Superfície/genética , Citidina/análogos & derivados , Proteínas Ligadas por GPI/genética , RNA Mensageiro/genética , Sindbis virus/fisiologia , Linhagem Celular , Acetiltransferases N-Terminal/genética , Estabilidade de RNARESUMO
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Assuntos
Carcinoma Hepatocelular , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Sindbis virus , Microambiente Tumoral , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Carcinoma Hepatocelular/terapia , Animais , Sindbis virus/genética , Sindbis virus/fisiologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/genética , Camundongos , Terapia Viral Oncolítica/métodos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Macrófagos/metabolismo , Macrófagos/imunologiaRESUMO
Alphavirus infection induces the expression of type I interferons, which inhibit the viral replication by upregulating the expression of interferon-stimulated genes (ISGs). Identification and mechanistic studies of the antiviral ISGs help to better understand how the host controls viral infection and help to better understand the viral replication process. Here, we report that the ISG product TMEM45B inhibits the replication of Sindbis virus (SINV). TMEM45B is a transmembrane protein that was detected mainly in the trans-Golgi network, endosomes, and lysosomes but not obviously at the plasma membrane or endoplasmic reticulum. TMEM45B interacted with the viral nonstructural proteins Nsp1 and Nsp4 and inhibited the translation and promoted the degradation of SINV RNA. TMEM45B overexpression rendered the intracellular membrane-associated viral RNA sensitive to RNase treatment. In line with these results, the formation of cytopathic vacuoles (CPVs) was dramatically diminished in TMEM45B-expressing cells. TMEM45B also interacted with Nsp1 and Nsp4 of chikungunya virus (CHIKV), suggesting that it may also inhibit the replication of other alphaviruses. These findings identified TMEM45B as an antiviral factor against alphaviruses and help to better understand the process of the viral genome replication. IMPORTANCE Alphaviruses are positive-stranded RNA viruses with more than 30 members. Infection with Old World alphaviruses, which comprise some important human pathogens such as chikungunya virus and Ross River virus, rarely results in fatal diseases but can lead to high morbidity in humans. Infection with New World alphaviruses usually causes serious encephalitis but low morbidity in humans. Alphavirus infection induces the expression of type I interferons, which subsequently upregulate hundreds of interferon-stimulated genes. Identification and characterization of host antiviral factors help to better understand how the viruses can establish effective infection. Here, we identified TMEM45B as a novel interferon-stimulated antiviral factor against Sindbis virus, a prototype alphavirus. TMEM45B interacted with viral proteins Nsp1 and Nsp4, interfered with the interaction between Nsp1 and Nsp4, and inhibited the viral replication. These findings provide insights into the detailed process of the viral replication and help to better understand the virus-host interactions.
Assuntos
Infecções por Alphavirus , Interferon Tipo I , Proteínas de Membrana , Sindbis virus , Proteínas não Estruturais Virais , Fatores de Restrição Antivirais , Vírus Chikungunya/genética , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Sindbis virus/genética , Sindbis virus/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
Transposable elements (TEs) are genomic parasites that are found in all genomes, some of which display sequence similarity to certain viruses. In insects, TEs are controlled by the Piwi-interacting small interfering RNA (piRNA) pathway in gonads, while the small interfering RNA (siRNA) pathway is dedicated to TE somatic control and defense against viruses. So far, these two small interfering RNA pathways are considered to involve distinct molecular effectors and are described as independent. Using Sindbis virus (SINV) in Drosophila, here we show that viral infections affect TE transcript amounts via modulations of the piRNA and siRNA repertoires, with the clearest effects in somatic tissues. These results suggest that viral acute or chronic infections may impact TE activity and, thus, the tempo of genetic diversification. In addition, these results deserve further evolutionary considerations regarding potential benefits to the host, the virus, or the TEs.
Assuntos
Infecções por Alphavirus/virologia , Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Sindbis virus/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/virologia , Evolução Molecular , FemininoRESUMO
The zebrafish (Danio rerio) possesses evolutionarily conserved innate and adaptive immunity as a mammal and has recently become a popular vertebrate model to exploit infection and immunity. Antiviral RNA interference (RNAi) has been illuminated in various model organisms, including Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans and mice. However, to date, there is no report on the antiviral RNAi pathway of zebrafish. Here, we have evaluated the possible use of zebrafish to study antiviral RNAi with Sindbis virus (SINV), vesicular stomatitis virus (VSV) and Nodamura virus (NoV). We find that SINVs and NoVs induce the production of virus-derived small interfering RNAs (vsiRNAs), the hallmark of antiviral RNAi, with a preference for a length of 22 nucleotides, after infection of larval zebrafish. Meanwhile, the suppressor of RNAi (VSR) protein, NoV B2, may affect the accumulation of the NoV in zebrafish. Furthermore, taking advantage of the fact that zebrafish argonaute-2 (Ago2) protein is naturally deficient in cleavage compared with that of mammals, we provide evidence that the slicing activity of human Ago2 can virtually inhibit the accumulation of RNA virus after being ectopically expressed in larval zebrafish. Thus, zebrafish may be a unique model organism to study the antiviral RNAi pathway.
Assuntos
Interferência de RNA , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Peixe-Zebra/virologia , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Imunidade Inata , Modelos Animais , Nodaviridae/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Sindbis virus/imunologia , Sindbis virus/fisiologia , Vesiculovirus/imunologia , Vesiculovirus/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismoRESUMO
RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.
Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Interferência de RNA/fisiologia , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Animais , Capsídeo , Linhagem Celular , Vírus Chikungunya/fisiologia , Drosophila , Vírus da Encefalite Equina do Oeste/fisiologia , Células HEK293 , Humanos , RNA Interferente Pequeno , RNA Viral , Sindbis virus/fisiologia , Vírion , Replicação ViralRESUMO
Alphavirus infections are characterized by global inhibition of cellular transcription and rapid induction of a cytopathic effect (CPE) in cells of vertebrate origin. Transcriptional shutoff impedes the cellular response to alphavirus replication and prevents establishment of an antiviral state. Chikungunya virus (CHIKV) is a highly pathogenic alphavirus representative, and its nonstructural protein 2 (nsP2) plays critical roles in both inhibition of transcription and CPE development. Previously, we have identified a small peptide in Sindbis virus (SINV) nsP2 (VLoop) that determined the protein's transcriptional inhibition function. It is located in the surface-exposed loop of the carboxy-terminal domain of nsP2 and exhibits high variability between members of different alphavirus serocomplexes. In this study, we found that SINV-specific mutations could not be directly applied to CHIKV. However, by using a new selection approach, we identified a variety of new VLoop variants that made CHIKV and its replicons incapable of inhibiting cellular transcription and dramatically less cytopathic. Importantly, the mutations had no negative effect on RNA and viral replication rates. In contrast to parental CHIKV, the developed VLoop mutants were unable to block induction of type I interferon. Consequently, they were cleared from interferon (IFN)-competent cells without CPE development. Alternatively, in murine cells that have defects in type I IFN production or signaling, the VLoop mutants established persistent, noncytopathic replication. The mutations in nsP2 VLoop may be used for development of new vaccine candidates against alphavirus infections and vectors for expression of heterologous proteins.IMPORTANCE Chikungunya virus is an important human pathogen which now circulates in both the Old and New Worlds. As in the case of other Old World alphaviruses, CHIKV nsP2 not only has enzymatic functions in viral RNA replication but also is a critical inhibitor of the antiviral response and one of the determinants of CHIKV pathogenesis. In this study, we have applied a new strategy to select a variety of CHIKV nsP2 mutants that no longer exhibited transcription-inhibitory functions. The designed CHIKV variants became potent type I interferon inducers and acquired a less cytopathic phenotype. Importantly, they demonstrated the same replication rates as the parental CHIKV. Mutations in the same identified peptide of nsP2 proteins derived from other Old World alphaviruses also abolished their nuclear functions. Such mutations can be further exploited for development of new attenuated alphaviruses.
Assuntos
Vírus Chikungunya/metabolismo , Proteínas não Estruturais Virais/genética , Animais , Antivirais , Linhagem Celular , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Efeito Citopatogênico Viral/genética , Vírus de DNA/genética , Humanos , Interferon Tipo I/genética , Camundongos , Mutação , Células NIH 3T3 , RNA Viral/metabolismo , Replicon , Transdução de Sinais , Sindbis virus/genética , Sindbis virus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genéticaRESUMO
Biological transmission of arthropod-borne viruses (arboviruses) to vertebrate hosts by hematophagous insects poses a global threat because such arboviruses can result in a range of serious public health infectious diseases. Sindbis virus (SINV), the prototype Alphavirus, was used to track infections in the posterior midgut (PMG) of Aedes aegypti adult mosquitoes. Females were fed viremic blood containing a virus reporter, SINV [Thosea asigna virus-green fluorescent protein (TaV-GFP)], that leaves a fluorescent signal in infected cells. We assessed whole-mount PMGs to identify primary foci, secondary target tissues, distribution, and virus persistence. Following a viremic blood meal, PMGs were dissected and analyzed at various days of post blood-feeding. We report that virus foci indicated by GFP in midgut epithelial cells resulted in a 9.8% PMG infection and a 10.8% dissemination from these infected guts. The number of virus foci ranged from 1 to 3 per individual PMG and was more prevalent in the PMG-middle > PMG-frontal > PMG-caudal regions. SINV TaV-GFP was first observed in the PMG (primary target tissue) at 3 days post blood-feeding, was sequestered in circumscribed foci, replicated in PMG peristaltic muscles (secondary target tissue) following dissemination, and GFP was observed to persist in PMGs for 30 days postinfection.
Assuntos
Aedes/virologia , Infecções por Alphavirus/virologia , Sindbis virus/fisiologia , Animais , Linhagem Celular , Feminino , Trato Gastrointestinal/virologia , Proteínas de Fluorescência VerdeRESUMO
Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics.IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.
Assuntos
Infecções por Alphavirus/metabolismo , Culicidae/metabolismo , Cisteína Endopeptidases/metabolismo , Proteoma/metabolismo , Sindbis virus/fisiologia , Nexinas de Classificação/metabolismo , Vírion , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Cricetinae , Culicidae/virologia , Células HEK293 , Humanos , Homologia de Sequência , Replicação ViralRESUMO
Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.
Assuntos
Infecções por Alphavirus/patologia , Cisteína Endopeptidases/metabolismo , Efeito Citopatogênico Viral , Biossíntese de Proteínas , Sindbis virus/fisiologia , Transcrição Gênica , Proteínas não Estruturais Virais/metabolismo , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Cisteína Endopeptidases/genética , Genoma Viral , Camundongos , Células NIH 3T3 , Proteínas não Estruturais Virais/genética , Vírion , Replicação ViralRESUMO
Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila melanogaster. By leveraging the power of Drosophila genetics and a parallel, highly tractable D. melanogaster derived JW18 cell culture system, we determined that in addition to reducing infectious virus production, Wolbachia negatively influences Sindbis virus particle infectivity. This is further accompanied by reductions in viral transcript and protein levels. Interestingly, unchanged ratio of proteins to viral RNA copies suggest that Wolbachia likely does not influence the translational efficiency of viral transcripts. Additionally, expression analyses of candidate host genes revealed D. melanogaster methyltransferase gene Mt2 as an induced host factor in the presence of Wolbachia. Further characterization of viral resistance in Wolbachia-infected flies lacking functional Mt2 revealed partial recovery of virus titer relative to wild-type, accompanied by complete restoration of viral RNA and protein levels, suggesting that Mt2 acts at the stage of viral genome replication. Finally, knockdown of Mt2 in Wolbachia uninfected JW18 cells resulted in increased virus infectivity, thus demonstrating its previously unknown role as an antiviral factor against Sindbis virus. In conclusion, our findings provide evidence supporting the role of Wolbachia-modulated host factors towards RNA virus resistance in arthropods, alongside establishing Mt2's novel antiviral function against Sindbis virus in D. melanogaster.
Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/virologia , Sindbis virus/fisiologia , Wolbachia/fisiologia , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Interações Hospedeiro-Patógeno , Simbiose , Replicação ViralRESUMO
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease-associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13-mediated mitophagy may contribute to ZSS pathogenesis.
Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitofagia , Peroxissomos/metabolismo , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Sindbis virus/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismoRESUMO
During the lifecycle of many enveloped viruses, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding that occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.
Assuntos
Glicoproteínas/metabolismo , Nucleocapsídeo/metabolismo , Sindbis virus/fisiologia , Proteínas Virais/metabolismo , Liberação de Vírus , Membrana Celular/química , Membrana Celular/metabolismo , Glicoproteínas/química , Transporte Proteico , Sindbis virus/química , Proteínas Virais/química , Montagem de VírusRESUMO
Interferon inducible transmembrane proteins (IFITMs) are broad-spectrum antiviral factors. In cell culture the entry of many enveloped viruses, including orthomyxo-, flavi-, and filoviruses, is inhibited by IFITMs, though the mechanism(s) involved remain unclear and may vary between viruses. We demonstrate that Sindbis and Semliki Forest virus (SFV), which both use endocytosis and acid-induced membrane fusion in early endosomes to infect cells, are restricted by the early endosomal IFITM3. The late endosomal IFITM2 is less restrictive and the plasma membrane IFITM1 does not inhibit normal infection by either virus. IFITM3 inhibits release of the SFV capsid into the cytosol, without inhibiting binding, internalization, trafficking to endosomes or low pH-induced conformational changes in the envelope glycoprotein. Infection by SFV fusion at the cell surface was inhibited by IFITM1, but was equally inhibited by IFITM3. Furthermore, an IFITM3 mutant (Y20A) that is localized to the plasma membrane inhibited infection by cell surface fusion more potently than IFITM1. Together, these results indicate that IFITMs, in particular IFITM3, can restrict alphavirus infection by inhibiting viral fusion with cellular membranes. That IFITM3 can restrict SFV infection by fusion at the cell surface equivalently to IFITM1 suggests that IFITM3 has greater antiviral potency against SFV.
Assuntos
Antígenos de Diferenciação/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vírus da Floresta de Semliki/fisiologia , Sindbis virus/fisiologia , Células A549 , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Antígenos de Diferenciação/genética , Endocitose/fisiologia , Endossomos/virologia , Humanos , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Internalização do VírusRESUMO
Palmitoylation is a reversible, posttranslational modification that helps target proteins to cellular membranes. The alphavirus small membrane proteins 6K and TF have been reported to be palmitoylated and to positively regulate budding. 6K and TF are isoforms that are identical in their N termini but unique in their C termini due to a -1 ribosomal frameshift during translation. In this study, we used cysteine (Cys) mutants to test differential palmitoylation of the Sindbis virus 6K and TF proteins. We modularly mutated the five Cys residues in the identical N termini of 6K and TF, the four additional Cys residues in TF's unique C terminus, or all nine Cys residues in TF. Using these mutants, we determined that TF palmitoylation occurs primarily in the N terminus. In contrast, 6K is not palmitoylated, even on these shared residues. In the C-terminal Cys mutant, TF protein levels increase both in the cell and in the released virion compared to the wild type. In viruses with the N-terminal Cys residues mutated, TF is much less efficiently localized to the plasma membrane, and it is not incorporated into the virion. The three Cys mutants have minor defects in cell culture growth but a high incidence of abnormal particle morphologies compared to the wild-type virus as determined by transmission electron microscopy. We propose a model where the C terminus of TF modulates the palmitoylation of TF at the N terminus, and palmitoylated TF is preferentially trafficked to the plasma membrane for virus budding. IMPORTANCE: Alphaviruses are a reemerging viral cause of arthritogenic disease. Recently, the small 6K and TF proteins of alphaviruses were shown to contribute to virulence in vivo Nevertheless, a clear understanding of the molecular mechanisms by which either protein acts to promote virus infection is missing. The TF protein is a component of budded virions, and optimal levels of TF correlate positively with wild-type-like particle morphology. In this study, we show that the palmitoylation of TF regulates its localization to the plasma membrane, which is the site of alphavirus budding. Mutants in which TF is not palmitoylated display drastically reduced plasma membrane localization, which effectively prevents TF from participating in budding or being incorporated into virus particles. Investigation of the regulation of TF will aid current efforts in the alphavirus field searching for approaches to mitigate alphaviral disease in humans.
Assuntos
Proteínas de Membrana/metabolismo , Sindbis virus/fisiologia , Proteínas Virais/metabolismo , Vírion/fisiologia , Liberação de Vírus , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Sindbis virus/ultraestrutura , Proteínas Virais/química , Proteínas Virais/genética , Vírion/ultraestrutura , Replicação ViralRESUMO
The positive-strand RNA viruses initiate their amplification in the cell from a single genome delivered by virion. This single RNA molecule needs to become involved in replication process before it is recognized and degraded by cellular machinery. In this study, we show that distantly related New World and Old World alphaviruses have independently evolved to utilize different cellular stress granule-related proteins for assembly of complexes, which recruit viral genomic RNA and facilitate formation of viral replication complexes (vRCs). Venezuelan equine encephalitis virus (VEEV) utilizes all members of the Fragile X syndrome (FXR) family, while chikungunya and Sindbis viruses exploit both members of the G3BP family. Despite being in different families, these proteins share common characteristics, which determine their role in alphavirus replication, namely, the abilities for RNA-binding and for self-assembly into large structures. Both FXR and G3BP proteins interact with virus-specific, repeating amino acid sequences located in the C-termini of hypervariable, intrinsically disordered domains (HVDs) of viral nonstructural protein nsP3. We demonstrate that these host factors orchestrate assembly of vRCs and play key roles in RNA and virus replication. Only knockout of all of the homologs results in either pronounced or complete inhibition of replication of different alphaviruses. The use of multiple homologous proteins with redundant functions mediates highly efficient recruitment of viral RNA into the replication process. This independently evolved acquisition of different families of cellular proteins by the disordered protein fragment to support alphavirus replication suggests that other RNA viruses may utilize a similar mechanism of host factor recruitment for vRC assembly. The use of different host factors by alphavirus species may be one of the important determinants of their pathogenesis.
Assuntos
Vírus Chikungunya/fisiologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Sindbis virus/fisiologia , Replicação Viral/fisiologia , Animais , Proteínas de Transporte/metabolismo , DNA Helicases , Técnicas de Inativação de Genes , Hibridização In Situ , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas de Ligação a Poli-ADP-Ribose , Reação em Cadeia da Polimerase , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas não Estruturais Virais/metabolismoRESUMO
Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors.