Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 631(8020): 386-392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961295

RESUMO

Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59-1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient.


Assuntos
Aptidão Genética , Mapeamento Geográfico , Streptococcus pneumoniae , Humanos , Aptidão Genética/efeitos dos fármacos , Aptidão Genética/genética , Genoma Bacteriano/genética , Resistência às Penicilinas/efeitos dos fármacos , Resistência às Penicilinas/genética , Penicilinas/farmacologia , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/transmissão , Vacinas Pneumocócicas/imunologia , Sorogrupo , África do Sul/epidemiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação , Vacinas Conjugadas/imunologia , Vacina Pneumocócica Conjugada Heptavalente/imunologia , Locomoção
2.
J Virol ; 98(7): e0068124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953379

RESUMO

Serum-neutralizing antibody titers are a critical measure of vaccine immunogenicity and are used to determine flavivirus seroprevalence in study populations. An effective dengue virus (DENV) vaccine must confer simultaneous protection against viruses grouped within four antigenic serotypes. Existing flavivirus neutralization assays, including the commonly used plaque/focus reduction neutralization titer (PRNT/FRNT) assay, require an individual assay for each virus, serotype, and strain and easily become a labor-intensive and time-consuming effort for large epidemiological studies or vaccine trials. Here, we describe a multiplex reporter virus particle neutralization titer (TetraPlex RVPNT) assay for DENV that allows simultaneous quantitative measures of antibody-mediated neutralization of infection against all four DENV serotypes in a single low-volume clinical sample and analyzed by flow cytometry. Comparative studies confirm that the neutralization titers of antibodies measured by the TetraPlex RVPNT assay are similar to FRNT/PRNT assay approaches performed separately for each viral strain. The use of this high-throughput approach enables the careful serological study in DENV endemic populations and vaccine recipients required to support the development of a safe and effective tetravalent DENV vaccine. IMPORTANCE: As a mediator of protection against dengue disease and a serological indicator of prior infection, the detection and quantification of neutralizing antibodies against DENV is an important "gold standard" tool. However, execution of traditional neutralizing antibody assays is often cumbersome and requires repeated application for each virus or serotype. The optimized RVPNT assay described here is high-throughput, easily multiplexed across multiple serotypes, and targets reporter viral particles that can be robustly produced for all four DENV serotypes. The use of this transformative RVPNT assay will support the expansion of neutralizing antibody datasets to answer research and public health questions often limited by the more cumbersome neutralizing antibody assays and the need for greater quantities of test serum.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue , Dengue , Testes de Neutralização , Sorogrupo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vírus da Dengue/imunologia , Vírus da Dengue/classificação , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Testes de Neutralização/métodos , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/imunologia , Vírion/imunologia , Animais
3.
J Virol ; 98(5): e0023924, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38647327

RESUMO

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de Partículas Semelhantes a Vírus , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dengue/prevenção & controle , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Imunoglobulina G/imunologia , Macaca fascicularis , Macaca mulatta , Sorogrupo , Vacinação , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Replicação Viral
4.
Mol Ther ; 32(2): 340-351, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38115579

RESUMO

Manufacturing sufficient adeno-associated virus (AAV) to meet current and projected clinical needs is a significant hurdle to the growing gene therapy industry. The recently discovered membrane-associated accessory protein (MAAP) is encoded by an alternative open reading frame in the AAV cap gene that is found in all presently reported natural serotypes. Recent evidence has emerged supporting a functional role of MAAP in AAV egress, although the underlying mechanisms of MAAP function remain unknown. Here, we show that inactivation of MAAP from AAV2 by a single point mutation that is silent in the VP1 open reading frame (ORF) (AAV2-ΔMAAP) decreased exosome-associated and secreted vector genome production. We hypothesized that novel MAAP variants could be evolved to increase AAV production and thus subjected a library encoding over 1 × 106 MAAP protein variants to five rounds of packaging selection into the AAV2-ΔMAAP capsid. Between each successive packaging round, we observed a progressive increase in both overall titer and ratio of secreted vector genomes conferred by the bulk-selected MAAP library population. Next-generation sequencing uncovered enriched mutational features, and a resulting selected MAAP variant containing missense mutations and a frameshifted C-terminal domain increased overall GFP transgene packaging in AAV2, AAV6, and AAV9 capsids.


Assuntos
Proteínas do Capsídeo , Dependovirus , Dependovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Sorogrupo , Transgenes , Vetores Genéticos/genética
5.
Drug Resist Updat ; 74: 101083, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593500

RESUMO

AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Filogenia , Humanos , China/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Polimorfismo de Nucleotídeo Único , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Epidemiologia Molecular , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Filogeografia , Sorogrupo , Genômica/métodos
6.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331785

RESUMO

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Células Endoteliais/metabolismo , Sorogrupo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Encéfalo/metabolismo , Apoptose , Proteínas Ribossômicas/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia
7.
J Infect Dis ; 230(1): e182-e188, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052735

RESUMO

Recent phylogenetic profiling of pneumococcal serotype 3 (Pn3) isolates revealed a dynamic interplay among major lineages with the emergence and global spread of a variant termed clade II. The cause of Pn3 clade II dissemination along with epidemiological and clinical ramifications are currently unknown. Here, we sought to explore biological characteristics of dominant Pn3 clades in a mouse model of pneumococcal invasive disease and carriage. Carriage and virulence potential were strain dependent with marked differences among clades. We found that clinical isolates from Pn3 clade II are less virulent and less invasive in mice compared to clade I isolates. We also observed that clade II isolates are carried for longer and at higher bacterial densities in mice compared to clade I isolates. Taken together, our data suggest that the epidemiological success of Pn3 clade II could be related to alterations in the pathogen's ability to cause invasive disease and to establish a robust carriage episode.


Assuntos
Portador Sadio , Infecções Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Animais , Streptococcus pneumoniae/patogenicidade , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Infecções Pneumocócicas/microbiologia , Virulência , Camundongos , Portador Sadio/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Filogenia
8.
J Infect Dis ; 230(1): e189-e198, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052729

RESUMO

BACKGROUND: Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS: The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS: Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS: A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.


Assuntos
Cápsulas Bacterianas , Filogenia , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Humanos , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/classificação , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/genética , Malaui , Adulto , Sequenciamento Completo do Genoma , Pré-Escolar , Criança , Vacinas Conjugadas/imunologia , Masculino , Genoma Bacteriano , Feminino , Adulto Jovem , Lactente , Genótipo , Portador Sadio/microbiologia
9.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652116

RESUMO

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Assuntos
Salmonella enterica , Sorogrupo , Análise Espectral Raman , Máquina de Vetores de Suporte , Análise Espectral Raman/métodos , Salmonella enterica/isolamento & purificação , Humanos , Algoritmos
10.
Infect Immun ; 92(2): e0031823, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38189339

RESUMO

Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.


Assuntos
Enterocolite , Microbiota , Salmonelose Animal , Camundongos , Animais , Salmonella typhimurium , Sorogrupo , Bactérias , Inflamação , Modelos Animais de Doenças , Vida Livre de Germes , Salmonelose Animal/microbiologia
11.
BMC Genomics ; 25(1): 57, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216873

RESUMO

BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Sorogrupo , Estudo de Associação Genômica Ampla , Riemerella/genética , Patos/genética , Patos/microbiologia , Doenças das Aves Domésticas/microbiologia
12.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693476

RESUMO

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Assuntos
Vírus da Dengue , Genoma Viral , Sorogrupo , Sequenciamento Completo do Genoma , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Sequenciamento Completo do Genoma/métodos , Humanos , Genótipo , Dengue/virologia , Dengue/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Viral/genética
13.
BMC Genomics ; 25(1): 604, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886668

RESUMO

BACKGROUND: Salmonella, an important foodborne pathogen, was estimated to be responsible for 95.1 million cases and 50,771 deaths worldwide. Sixteen serovars were responsible for approximately 80% of Salmonella infections in humans in China, and infections caused by a few uncommon serovars have been reported in recent years, though not with S. Welikade. This study reports the first clinical case caused by S. Welikade in China and places Chinese S. Welikade isolates in the context of global isolates via genomic analysis. For comparison, S. Welikade isolates were also screened in the Chinese Local Surveillance System for Salmonella (CLSSS). The minimum inhibitory concentrations (MICs) of 28 antimicrobial agents were determined using the broth microdilution method. The isolates were sequenced on an Illumina platform to identify antimicrobial resistance genes, virulence genes, and phylogenetic relationships. RESULTS: The S. Welikade isolate (Sal097) was isolated from a two-year-old boy with acute gastroenteritis in 2021. Along with the other two isolates found in CLSSS, the three Chinese isolates were susceptible to all the examined antimicrobial agents, and their sequence types (STs) were ST5123 (n = 2) and ST3774 (n = 1). Single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed that global S. Welikade strains can be divided into four groups, and these three Chinese isolates were assigned to B (n = 2; Sal097 and XXB1016) and C (n = 1; XXB700). In Group B, the two Chinese ST5123 isolates were closely clustered with three UK ST5123 isolates. In Group C, the Chinese isolate was closely related to the other 12 ST3774 isolates. The number of virulence genes in the S. Welikade isolates ranged from 59 to 152. The galF gene was only present in Group A, the pipB2 gene was only absent from Group A, the avrA gene was only absent from Group B, and the allB, sseK1, sspH2, STM0287, and tlde1 were found only within Group C and D isolates. There were 15 loci unique to the Sal097 isolate. CONCLUSION: This study is the first to characterize and investigate clinical S. Welikade isolates in China. Responsible for a pediatric case of gastroenteritis in 2021, the clinical isolate harbored no antimicrobial resistance and belonged to phylogenetic Group B of global S. Welikade genomes.


Assuntos
Diarreia , Testes de Sensibilidade Microbiana , Filogenia , Salmonella enterica , Sorogrupo , Humanos , China , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/classificação , Masculino , Pré-Escolar , Diarreia/microbiologia , Infecções por Salmonella/microbiologia , Genoma Bacteriano , Genômica , Antibacterianos/farmacologia , Fatores de Virulência/genética
14.
Emerg Infect Dis ; 30(3): 572-576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407225

RESUMO

A high prevalence of Echinostoma mekongi infection (13.9%; 260/1,876) was found among schoolchildren and adults in Kandal Province, Cambodia, by fecal examination, worm expulsion, and molecular analysis of cox1 and nd1 genes. The source of infection was consumption of Pila sp. snails, a finding confirmed morphologically and molecularly.


Assuntos
Echinostoma , Gastrópodes , Animais , Camboja/epidemiologia , Prevalência , Sorogrupo
15.
Emerg Infect Dis ; 30(3): 460-468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407254

RESUMO

During January 28-May 5, 2019, a meningitis outbreak caused by Neisseria meningitidis serogroup C (NmC) occurred in Burkina Faso. Demographic and laboratory data for meningitis cases were collected through national case-based surveillance. Cerebrospinal fluid was collected and tested by culture and real-time PCR. Among 301 suspected cases reported in 6 districts, N. meningitidis was the primary pathogen detected; 103 cases were serogroup C and 13 were serogroup X. Whole-genome sequencing revealed that 18 cerebrospinal fluid specimens tested positive for NmC sequence type (ST) 10217 within clonal complex 10217, an ST responsible for large epidemics in Niger and Nigeria. Expansion of NmC ST10217 into Burkina Faso, continued NmC outbreaks in the meningitis belt of Africa since 2019, and ongoing circulation of N. meningitidis serogroup X in the region underscore the urgent need to use multivalent conjugate vaccines in regional mass vaccination campaigns to reduce further spread of those serogroups.


Assuntos
Meningite , Neisseria meningitidis Sorogrupo C , Neisseria meningitidis , Humanos , Burkina Faso/epidemiologia , Sorogrupo , Neisseria meningitidis Sorogrupo C/genética , Surtos de Doenças , Neisseria meningitidis/genética
16.
Emerg Infect Dis ; 30(4): 701-710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526070

RESUMO

Salmonella enterica serovar Infantis presents an ever-increasing threat to public health because of its spread throughout many countries and association with high levels of antimicrobial resistance (AMR). We analyzed whole-genome sequences of 5,284 Salmonella Infantis strains from 74 countries, isolated during 1989-2020 from a wide variety of human, animal, and food sources, to compare genetic phylogeny, AMR determinants, and plasmid presence. The global Salmonella Infantis population structure diverged into 3 clusters: a North American cluster, a European cluster, and a global cluster. The levels of AMR varied by Salmonella Infantis cluster and by isolation source; 73% of poultry isolates were multidrug resistant, compared with 35% of human isolates. This finding correlated with the presence of the pESI megaplasmid; 71% of poultry isolates contained pESI, compared with 32% of human isolates. This study provides key information for public health teams engaged in reducing the spread of this pathogen.


Assuntos
Saúde Única , Salmonella enterica , Animais , Humanos , Sorogrupo , Antibacterianos/farmacologia , Salmonella/genética , Aves Domésticas , Farmacorresistência Bacteriana Múltipla/genética
17.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526209

RESUMO

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Senegal/epidemiologia , Sorogrupo , Meio Ambiente , Dengue/epidemiologia
18.
Emerg Infect Dis ; 30(4): 691-700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526124

RESUMO

Salmonella enterica serovar Abortusovis is a ovine-adapted pathogen that causes spontaneous abortion. Salmonella Abortusovis was reported in poultry in 2009 and has since been reported in human infections in New South Wales, Australia. Phylogenomic analysis revealed a clade of 51 closely related isolates from Australia originating in 2004. That clade was genetically distinct from ovine-associated isolates. The clade was widespread in New South Wales poultry production facilities but was only responsible for sporadic human infections. Some known virulence factors associated with human infections were only found in the poultry-associated clade, some of which were acquired through prophages and plasmids. Furthermore, the ovine-associated clade showed signs of genome decay, but the poultry-associated clade did not. Those genomic changes most likely led to differences in host range and disease type. Surveillance using the newly identified genetic markers will be vital for tracking Salmonella Abortusovis transmission in animals and to humans and preventing future outbreaks.


Assuntos
Salmonella enterica , Salmonella , Gravidez , Feminino , Humanos , Animais , Ovinos , Aves Domésticas , Sorogrupo , New South Wales/epidemiologia , Austrália/epidemiologia
19.
Emerg Infect Dis ; 30(2): 376-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232709

RESUMO

During May 2022-April 2023, dengue virus serotype 3 was identified among 601 travel-associated and 61 locally acquired dengue cases in Florida, USA. All 203 sequenced genomes belonged to the same genotype III lineage and revealed potential transmission chains in which most locally acquired cases occurred shortly after introduction, with little sustained transmission.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Florida/epidemiologia , Viagem , Sequência de Bases , Genótipo , Sorogrupo , Filogenia
20.
Emerg Infect Dis ; 30(2): 368-371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270157

RESUMO

Three mother-baby pairs with invasive meningococcal disease occurred over 7 months in Western Australia, Australia, at a time when serogroup W sequence type 11 clonal complex was the predominant local strain. One mother and 2 neonates died, highlighting the role of this strain as a cause of obstetric and early neonatal death.


Assuntos
Infecções Meningocócicas , Neisseria meningitidis , Humanos , Lactente , Recém-Nascido , Feminino , Gravidez , Austrália Ocidental/epidemiologia , Sorogrupo , Austrália/epidemiologia , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA