Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8010): 165-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632398

RESUMO

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Assuntos
Antibiose , Proteínas de Bactérias , Toxinas Bacterianas , Streptomyces , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Microscopia Crioeletrônica , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efeitos dos fármacos , Streptomyces griseus/genética , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismo
2.
Nature ; 590(7846): 463-467, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536618

RESUMO

Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.


Assuntos
Antibacterianos/biossíntese , Furanos/metabolismo , Streptomyces coelicolor/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Furanos/química , Hormônios/química , Hormônios/classificação , Hormônios/metabolismo , Ligantes , Modelos Moleculares , Peptídeos/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/classificação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Transdução de Sinais , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Relação Estrutura-Atividade
3.
J Nat Prod ; 83(1): 159-163, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31904955

RESUMO

Ion mobility spectrometry was utilized to corroborate the identity of streptorubin B (2) as the natural product produced by Streptomyces coelicolor. Natural product 2 was initially assigned as butylcycloheptylprodigiosin (3), and only relatively recently was this assignment clarified. We present additional evidence of this assignment by comparing collisional cross sections (Ω) of synthetic standards of 2, 3, and metacycloprodigiosin (4) to the cyclic prodiginine produced by S. coelicolor. Calculated theoretical Ω values demonstrate that cyclic prodiginines could be identified without standards. This work highlights ion mobility as an efficient tool for the dereplication of natural products.


Assuntos
Prodigiosina/análogos & derivados , Streptomyces coelicolor/química , Produtos Biológicos , Espectrometria de Mobilidade Iônica , Estrutura Molecular , Prodigiosina/química
4.
Anal Chem ; 91(23): 14818-14823, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31694373

RESUMO

Microbes interact with the world around them at the chemical level. However, directly examining the chemical exchange between microbes and microbes and their environment, at ecological scales, i.e., the scale of a single bacterial cell or small groups of cells, remains a key challenge. Here we address this obstacle by presenting a methodology that enables matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) of bacterial microcolonies. By combining optimized sample preparation with subatmospheric pressure MALDI, we demonstrate that chemical output from groups of as few as ∼50 cells can be visualized with MALDI-IMS. Application of this methodology to Bacillus subtilis and Streptomyces coelicolor revealed heterogeneity in chemical output across microcolonies and asymmetrical metabolite production when cells grew within physiological gradients produced by Medicago sativa roots. Taken together, these results indicate that MALDI-IMS can readily visualize metabolites made by very small assemblages of bacterial cells and that even these small groups of cells can differentially produce metabolites in response to local chemical gradients.


Assuntos
Bacillus subtilis/metabolismo , Metaboloma/fisiologia , Peptídeos Cíclicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Streptomyces coelicolor/metabolismo , Bacillus subtilis/química , Bacillus subtilis/crescimento & desenvolvimento , Medicago sativa/microbiologia , Raízes de Plantas/microbiologia , Prótons , Percepção de Quorum/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Streptomyces coelicolor/química , Streptomyces coelicolor/crescimento & desenvolvimento
5.
Microbiology (Reading) ; 165(10): 1095-1106, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31339487

RESUMO

Dodecins are small flavin-binding proteins that are widespread amongst haloarchaeal and bacterial species. Haloarchaeal dodecins predominantly bind riboflavin, while bacterial dodecins have been reported to bind riboflavin-5'-phosphate, also called flavin mononucleotide (FMN), and the FMN derivative, flavin adenine dinucleotide (FAD). Dodecins form dodecameric complexes and represent buffer systems for cytoplasmic flavins. In this study, dodecins of the bacteria Streptomyces davaonensis (SdDod) and Streptomyces coelicolor (ScDod) were investigated. Both dodecins showed an unprecedented low affinity for riboflavin, FMN and FAD when compared to other bacterial dodecins. Significant binding of FMN and FAD occurred at relatively low temperatures and under acidic conditions. X-ray diffraction analyses of SdDod and ScDod revealed that the structures of both Streptomyces dodecins are highly similar, which explains their similar binding properties for FMN and FAD. In contrast, SdDod and ScDod showed very different properties with regard to the stability of their dodecameric complexes. Site-directed mutagenesis experiments revealed that a specific salt bridge (D10-K62) is responsible for this difference in stability.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Streptomyces coelicolor/química , Streptomyces/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estabilidade Proteica , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Especificidade da Espécie , Streptomyces/genética , Streptomyces coelicolor/genética , Temperatura
6.
Biochem Biophys Res Commun ; 516(4): 1183-1189, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31296387

RESUMO

Acyl carrier protein (ACP) is highly conserved across taxa and plays key roles in the fatty acid synthesis system by mediating acyl group delivery and shuttling. Here, we compared the structural and dynamic features of human type Ι ACP (hACP) and Escherichia coli type II ACP (EcACP). Analysis of chemical shift perturbations upon octanoyl group attachment showed perturbations in hACP only near acyl-group attachment sites, whereas EcACP showed the perturbation at residues in the hydrophobic cavity. This difference confirmed that hACP does not sequester the acyl chain in the hydrophobic cavity, which is blocked by hydrophobic triad residues (L34, L39, and V64). Moreover, hACP showed more flexible backbone dynamics than EcACP, especially in the front of α1α2 loop. We further investigated the interactions of hACP with Streptomyces coelicolor ACP synthase (ScAcpS), which is used to convert apo mammalian ACP to the holo form. Similar to protein-protein interface (PPI) found in hACP-hAcpS crystal structure, docking simulation and binding affinity measurements showed that the hydrophobic residues in universal recognition helix II of hACP contribute mainly to ScAcpS binding with binding affinity of 9.2 ±â€¯9.1 × 104 M. In contrast, interaction found in EcACP-EcAcpS crystal structure is dominated by electrostatic interactions. These results suggest that ScAcpS has relatively relaxed substrate specificity and a similar charge distribution to hAcpS. These fundamental differences of the charge distribution in hAcpS, ScAcpS and EcAcpS largely affect the interaction with hACP. These findings can provide a useful resource for development of novel antibiotics inhibiting PPI in bacterial FAS proteins with specificity.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Streptomyces coelicolor/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Mapas de Interação de Proteínas , Alinhamento de Sequência , Streptomyces coelicolor/química
7.
Chemistry ; 25(14): 3675-3684, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30600851

RESUMO

Nitric oxide (NO) can function as both a cytotoxin and a signalling molecule. In both cases, reaction with iron-sulfur (Fe-S) cluster proteins plays an important role because Fe-S clusters are reactive towards NO and so are a primary site of general NO-induced damage (toxicity). This sensitivity to nitrosylation is harnessed in the growing group of regulatory proteins that function in sensing of NO via an Fe-S cluster. Although information about the products of cluster nitrosylation is now emerging, detection and identification of intermediates remains a major challenge, due to their transient nature and the difficulty in distinguishing spectroscopically similar iron-NO species. Here we report studies of the NO-sensing Fe-S cluster regulators NsrR and WhiD using non-denaturing mass spectrometry, in which non-covalent interactions between the protein and Fe/S/NO species are preserved. The data provide remarkable insight into the nitrosylation reactions, permitting identification, for the first time, of protein-bound mono-, di- and tetranitrosyl [4Fe-4S] cluster complexes ([4Fe-4S](NO), [4Fe-4S])(NO)2 and [4Fe-4S](NO)4 ) as intermediates along pathways to formation of product Roussin's red ester (RRE) and Roussin's black salt (RBS)-like species. The data allow the nitrosylation mechanisms of NsrR and WhiD to be elucidated and clearly distinguished.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Streptomyces coelicolor/química , Fatores de Transcrição/química
8.
J Bacteriol ; 200(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30061355

RESUMO

The bacterial cell wall maintains cell shape and protects against bursting by turgor. A major constituent of the cell wall is peptidoglycan (PG), which is continuously modified to enable cell growth and differentiation through the concerted activity of biosynthetic and hydrolytic enzymes. Streptomycetes are Gram-positive bacteria with a complex multicellular life style alternating between mycelial growth and the formation of reproductive spores. This involves cell wall remodeling at apical sites of the hyphae during cell elongation and autolytic degradation of the vegetative mycelium during the onset of development and antibiotic production. Here, we show that there are distinct differences in the cross-linking and maturation of the PGs between exponentially growing vegetative hyphae and the aerial hyphae that undergo sporulation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified over 80 different muropeptides, revealing that major PG hydrolysis takes place over the course of mycelial growth. Half of the dimers lacked one of the disaccharide units in transition-phase cells, most likely due to autolytic activity. The deacetylation of MurNAc to MurN was particularly pronounced in spores and strongly reduced in sporulation mutants with a deletion of bldD or whiG, suggesting that MurN is developmentally regulated. Altogether, our work highlights the dynamic and growth phase-dependent changes in the composition of the PG in StreptomycesIMPORTANCE Streptomycetes are bacteria with a complex lifestyle and are model organisms for bacterial multicellularity. From a single spore, a large multigenomic multicellular mycelium is formed, which differentiates to form spores. Programmed cell death is an important event during the onset of morphological differentiation. In this work, we provide new insights into the changes in the peptidoglycan composition and over time, highlighting changes over the course of development and between growing mycelia and spores. This revealed dynamic changes in the peptidoglycan when the mycelia aged, with extensive peptidoglycan hydrolysis and, in particular, an increase in the proportion of 3-3 cross-links. Additionally, we identified a muropeptide that accumulates predominantly in the spores and may provide clues toward spore development.


Assuntos
Proteínas de Bactérias/química , Peptidoglicano/química , Streptomyces coelicolor/química , Parede Celular/química , Cromatografia Líquida , Hidrólise , Hifas/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
9.
Phys Biol ; 15(2): 026004, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29251625

RESUMO

We have extended our analytically derived PDB-NMA formulation, Atomic Torsional Modal Analysis or ATMAN (Tirion and ben-Avraham 2015 Phys. Rev. E 91 032712), to include protein dimers using mixed internal and Cartesian coordinates. A test case on a 1.3 [Formula: see text] resolution model of a small homodimer, ActVA-ORF6, consisting of two 112-residue subunits identically folded in a compact 50 [Formula: see text] sphere, reproduces the distinct experimental Debye-Waller motility asymmetry for the two chains, demonstrating that structure sensitively selects vibrational signatures. The vibrational analysis of this PDB entry, together with biochemical and crystallographic data, demonstrates the cooperative nature of the dimeric interaction of the two subunits and suggests a mechanical model for subunit interconversion during the catalytic cycle.


Assuntos
Proteínas de Bactérias/química , Multimerização Proteica , Streptomyces coelicolor/química , Bases de Dados de Proteínas , Modelos Moleculares
10.
Arch Biochem Biophys ; 639: 26-37, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288053

RESUMO

The phosphotransferase system (PTS) controls the preferential use of sugars in bacteria and it is also involved in other processes, such as chemotaxis. It is formed by a protein cascade in which the first two proteins are general (namely, EI and HPr) and the others are sugar-specific permeases. The Rsd protein binds specifically to the RNA polymerase (RNAP) σ70 factor. We first characterized the conformational stability of Escherichia coli Rsd. And second, we delineated the binding regions of Streptomyces coelicolor, HPrsc, and E. coli Rsd, by using fragments derived from each protein. To that end, we used several biophysical probes, namely, fluorescence, CD, NMR, ITC and BLI. Rsd had a free energy of unfolding of 15 kcal mol-1 at 25 °C, and a thermal denaturation midpoint of 103 °C at pH 6.5. The affinity between Rsd and HPrsc was 2 µM. Interestingly enough, the isolated helical-peptides, comprising the third (RsdH3) and fourth (RsdH4) Rsd helices, also interacted with HPrsc in a specific manner, and with affinities similar to that of the whole Rsd. Moreover, the isolated peptide of HPrsc, HPr9-30, comprising the active site, His15, also was bound to intact Rsd with similar affinity. Therefore, binding between Rsd and HPrsc was modulated by the two helices H3 and H4 of Rsd, and the regions around the active site of HPrsc. This implies that specific fragments of Rsd and HPrsc can be used to interfere with other protein-protein interactions (PPIs) of each other protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Peptídeos/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Proteínas Repressoras/química , Streptomyces coelicolor/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
12.
J Sci Food Agric ; 98(10): 3843-3850, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29363791

RESUMO

BACKGROUND: The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. RESULTS: WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of ß-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. CONCLUSION: In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry.


Assuntos
Proteínas Fúngicas/química , Lacase/química , Streptomyces coelicolor/enzimologia , Biocatálise , Reagentes de Ligações Cruzadas/química , Embalagem de Alimentos/instrumentação , Proteínas do Leite/química , Estrutura Secundária de Proteína , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Streptomyces coelicolor/química
13.
J Struct Biol ; 198(2): 82-91, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28400129

RESUMO

Chaplin E, is one of five self-assembling peptides secreted by Streptomyces coelicolor that assist aerial growth by lowering the surface tension of water. Although the surface activity of a mixture of chaplin peptides has observed to depend on pH, it is unclear how the solvent environment (i.e. pH) influences the structure, assembly and subsequent functionality of these individual peptides. In this study, the conformation and fibril forming propensity of the Chaplin E peptide was assessed as a function of pH using a combination of experimental measurements and molecular dynamics simulations. At an acidic pH of 3.0, Chaplin E retained a random coil structure, whereas at the isoelectric point of 6.7 or a basic pH of 10.0, Chaplin E rapidly formed amyloid fibrils rich in ß-sheet structure with high efficiency (>93%). Molecular dynamics simulations indicate the persistence of greater α-helical content at the N-terminus at high pH; this is likely partly due to the lack of electrostatic repulsion between residues His6 and Lys10. Since fibril formation was observed at high but not at low pH, we propose that the presence of an N-terminal α-helix in the monomeric form of Chaplin E is required for aggregation and conversion to ß-amyloid fibrils. The pH sensitivity of Chaplin E peptide structure provides a route to control peptide assembly and may be important for the physiological function of this peptide, as a surface active agent in the transition from vegetative to aerial growth and could assist Streptomyces coelicolor in response to environmental fluctuations in pH.


Assuntos
Proteínas Amiloidogênicas/química , Streptomyces coelicolor/química , Amiloide/química , Proteínas Amiloidogênicas/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tensoativos
14.
J Struct Biol ; 198(2): 134-146, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28343010

RESUMO

In Streptomycetes, tetracycline repressor family of transcription regulators (TetR-FTRs) controls various biological processes including antibiotic biosynthesis, cellular morphology and innate resistance. Here, we focus on understanding the structural basis of transcription regulation by CprB, a member of TetR-FTRs from S. coelicolor. CprB is implicated as a receptor of γ-butyrolactones, a class of quorum sensing molecules, responsible for initiating secondary metabolic pathways. In order to understand the molecular mechanism of DNA recognition, the X-ray structure of CprB in complex with its biological relevant operator sequence was solved to a resolution of 3.95Å. Furthermore, to refine and compliment the results, atomistic molecular dynamics simulations were carried out using the X-ray structure as the template. The studies reveal that CprB binds to DNA as dimer of dimers with this mode of interaction results in minimal distortion in the DNA, enabling these proteins to recognize multiple sequences with varying affinity. Another crucial finding from our simulation results was that the positively charged N-terminal arm of CprB brings extra stability to the protein-DNA complex by interacting with the minor-groove of the DNA and anchoring itself to the phosphate backbone. Corroborating electrophoretic mobility shift assay and fluorescence anisotropy experiments showed that the mutant ΔN6-CprB exhibited about 7-8 fold reduced DNA binding. Comparison with other TetR-FTRs reveals that this strategy is also employed by over 25% of TetR-FTRs, where N-terminal anchoring mechanism is used to enhance selectivity for a particular DNA sequence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Streptomyces coelicolor/química , Transativadores/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Estrutura Molecular , Estabilidade Proteica , Transativadores/metabolismo
15.
J Biol Chem ; 291(44): 23175-23187, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27634042

RESUMO

ADP-ribosylation is a post-translational modification that can alter the physical and chemical properties of target proteins and that controls many important cellular processes. Macrodomains are evolutionarily conserved structural domains that bind ADP-ribose derivatives and are found in proteins with diverse cellular functions. Some proteins from the macrodomain family can hydrolyze ADP-ribosylated substrates and therefore reverse this post-translational modification. Bacteria and Streptomyces, in particular, are known to utilize protein ADP-ribosylation, yet very little is known about their enzymes that synthesize and remove this modification. We have determined the crystal structure and characterized, both biochemically and functionally, the macrodomain protein SCO6735 from Streptomyces coelicolor This protein is a member of an uncharacterized subfamily of macrodomain proteins. Its crystal structure revealed a highly conserved macrodomain fold. We showed that SCO6735 possesses the ability to hydrolyze PARP-dependent protein ADP-ribosylation. Furthermore, we showed that expression of this protein is induced upon DNA damage and that deletion of this protein in S. coelicolor increases antibiotic production. Our results provide the first insights into the molecular basis of its action and impact on Streptomyces metabolism.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Streptomyces coelicolor/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dano ao DNA , Processamento de Proteína Pós-Traducional , Streptomyces coelicolor/química , Streptomyces coelicolor/genética
16.
J Biol Chem ; 290(11): 7280-90, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25631049

RESUMO

Lipoate-protein ligases are used to scavenge lipoic acid from the environment and attach the coenzyme to its cognate proteins, which are generally the E2 components of the 2-oxoacid dehydrogenases. The enzymes use ATP to activate lipoate to its adenylate, lipoyl-AMP, which remains tightly bound in the active site. This mixed anhydride is attacked by the ϵ-amino group of a specific lysine present on a highly conserved acceptor protein domain, resulting in the amide-linked coenzyme. The Streptomyces coelicolor genome encodes only a single putative lipoate ligase. However, this protein had only low sequence identity (<25%) to the lipoate ligases of demonstrated activity and appears to be a circularly permuted version of the known lipoate ligase proteins in that the canonical C-terminal domain seems to have been transposed to the N terminus. We tested the activity of this protein both by in vivo complementation of an Escherichia coli ligase-deficient strain and by in vitro assays. Moreover, when the domains were rearranged into a protein that mimicked the arrangement found in the canonical lipoate ligases, the enzyme retained complementation activity. Finally, when the two domains were separated into two proteins, both domain-containing proteins were required for complementation and catalysis of the overall ligase reaction in vitro. However, only the large domain-containing protein was required for transfer of lipoate from the lipoyl-AMP intermediate to the acceptor proteins, whereas both domain-containing proteins were required to form lipoyl-AMP.


Assuntos
Escherichia coli/enzimologia , Peptídeo Sintases/química , Peptídeo Sintases/genética , Streptomyces coelicolor/enzimologia , Ácido Tióctico/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/metabolismo , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
17.
Appl Environ Microbiol ; 82(18): 5661-72, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422828

RESUMO

UNLABELLED: Although anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation of Streptomyces coelicolor A3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in the S. coelicolor A3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in a pdtA deletion mutant, resulting in 34% nonviable spores. pdtA deletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions. IMPORTANCE: Anionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. Although Streptomyces coelicolor A3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in the S. coelicolor A3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation of S. coelicolor A3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of the Streptomyces spore wall-synthesizing complex (SSSC), to ensure the integrity of the spore envelope. Surprisingly, PdtA also has a crucial role in vegetative growth under stress conditions and is required for proper peptidoglycan incorporation during apical tip extension.


Assuntos
Glicosiltransferases/metabolismo , Polissacarídeos/análise , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/crescimento & desenvolvimento , Estresse Fisiológico , Meios de Cultura/química , Deleção de Genes , Glicosiltransferases/genética , Viabilidade Microbiana , Peptidoglicano/biossíntese , Esporos Bacterianos/química , Streptomyces coelicolor/química , Streptomyces coelicolor/fisiologia
18.
J Bacteriol ; 197(5): 913-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535276

RESUMO

Although Streptomyces coelicolor is not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function of tdd8, the transcriptomes of S. coelicolor strain M145 and of a tdd8 deletion mutant derivative (the Δtdd8 strain) were compared. Several orthologs of Mycobacterium tuberculosis genes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site of M. tuberculosis has been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD(+)/NADH ratio in the Δtdd8 strain. This S. coelicolor gene cluster was shown to be induced by hypoxia and NO stress. While the tdd8 deletion mutant (the Δtdd8 strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca(2+) in Δtdd8 culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Streptomyces coelicolor/química , Streptomyces coelicolor/genética
19.
J Bacteriol ; 197(5): 848-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512314

RESUMO

Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Citocinas/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/genética , Citocinas/química , Citocinas/genética , Dados de Sequência Molecular , Peptidoglicano/metabolismo , Alinhamento de Sequência , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
20.
Biochemistry ; 54(48): 7142-55, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598179

RESUMO

Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.


Assuntos
Alendronato/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Naftóis/metabolismo , Sesquiterpenos/metabolismo , Streptomyces coelicolor/enzimologia , Cristalografia por Raios X , Ciclização , Magnésio/metabolismo , Modelos Moleculares , Fosfatos de Poli-Isoprenil/metabolismo , Estrutura Terciária de Proteína , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA