RESUMO
Antibiotics are essential for treating illnesses, but abuse has resulted in serious consequences. Rapid and precise detection of antibiotic residues, such as sulfamethazine (SFZ), in water and biological samples is critical for public health and environmental safety. To address this challenge, we have introduced a pioneering electrochemical sensor incorporating a nanocomposite of perovskite-structured praseodymium cobaltite (PrCoO3) integrated with carbon nanofibers (CNFs) on a glassy carbon electrode (GCE|CNF/PrCoO3). We synthesized the CNF/PrCoO3 nanocomposite using ultrasonic fabrication and confirmed its formation with advanced techniques. GCE|CNF/PrCoO3 offer superior SFZ detection with a 2.889 nM/L limit and high selectivity, due to PrCoO3's electrocatalytic properties and CNF's enhanced conductivity. We validated the sensor's effectiveness in detecting SFZ in various real-water samples, demonstrating its repeatability, reproducibility, and stability. This confirms its reliability for environmental monitoring. The study highlights the potential of perovskite-carbon composites and paves the way for developing cost-effective sensors for pharmaceutical contaminants.
Assuntos
Carbono , Nanofibras , Sulfametazina , Nanofibras/química , Carbono/química , Sulfametazina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Cobalto/química , Poluentes Químicos da Água/análiseRESUMO
Tequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles.
Assuntos
Agave , Carvão Vegetal , Sulfametazina , Poluentes Químicos da Água , Adsorção , Sulfametazina/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Agave/química , Purificação da Água/métodosRESUMO
Sulfamethazine (SMZ), trimethoprim (TMP) and doxycycline (DOXY) are drugs of choice used in the treatment of intestinal and respiratory infections that affect poultry and swine. The aim of this study was develop and validate a simple, sensitive and fast method for the simultaneous determination of SMZ, TMP and DOXY in veterinary formulations by high-performance liquid chromatography. The separation was performed on a Macherey-Nagel C8 analytical column (4 × 125 mm, 5 µm), with a flow rate of 0.5 ml min-1 and detection at 268, 270 and 350 nm, for SMZ, TMP and DOXY, respectively. All measurements were performed in acetonitrile-water (45:55 v/v; pH 3.0). The analytical curves were linear (r > 0.9997) in the concentration range of 5.0-35.0 µg ml-1 for SMZ, 1.0-7.0 µg ml-1 for TMP and 7.0-13.0 µg ml-1 for DOXY. The method proved to be precise, robust, accurate and selective. In accelerated stability, the sample was analyzed for 6 months, with no major variations observed in organoleptic analysis and pH. Therefore, the developed method was proved to be suitable for routine quality control analyses for the simultaneous determination of SMZ, TMP and DOXY in pharmaceutical formulations.
Assuntos
Sulfametazina , Trimetoprima , Animais , Suínos , Trimetoprima/análise , Cromatografia Líquida de Alta Pressão/métodos , Sulfametazina/análise , Doxiciclina , ÁguaRESUMO
Due to the high demand for honey, beekeepers often feed the bees with antibiotics to protect honeybees against illnesses; the determination of veterinary drugs and their residues in bee products especially in honey is gaining importance. In this study, commercially available 15 different brands, a total of 22 honey (14 blossoms and 8 pines) samples obtained from 5 chain supermarkets in the city of Bingöl and Diyarbakir, Turkey were analysed for 29 antibiotic residues. These antibiotics belong to 10 different categories, including tetracyclines, aminoglycosides, macrolides, sulfonamides, fluoroquinolones, benzimidazoles, anthelmintic, amphenicols, quinolines, and oxazolidines. For the qualitative and quantitative determination of the antibiotics, a triple quadrupole liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. A total of 10 out of 22 honey (8 blossom, 57.14 % and 2 pine, 25 %) samples were found to be positive for antibiotics. Among the tested antibiotics, tetracycline, dihydrostreptomycin, streptomycin, erythromycin, and sulfadimidine were detected in the honey samples. Dihydrostreptomycin and sulfadimidine were detected in 6 samples, erythromycin was determined in 4 samples, streptomycin was found in 2 samples, and lastly, tetracycline was detected only in one sample. The highest and the lowest concentrations of antibiotics detected in the samples were dihydrostreptomycin and erythromycin found at the amount of 992.58â µg/kg and 0.77â µg/kg respectively. The proposed method was validated with a limit of quantification (LOQ) and limit of detection (LOD) ranging between 0.42 and 3.22â µg /kg and 0.13-0.97â µg /kg respectively. Good linearities were also achieved ranging between R2 =0.987 and 0.999.
Assuntos
Sulfato de Di-Hidroestreptomicina , Mel , Abelhas , Animais , Antibacterianos/análise , Mel/análise , Sulfato de Di-Hidroestreptomicina/análise , Espectrometria de Massas em Tandem/métodos , Tetraciclina , Sulfametazina/análise , Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida , Estreptomicina/análise , EritromicinaRESUMO
The most frequently used sulfonamide is sulfamethazine (SMZ) because it is often found in foods made from livestock, which is hazardous for individuals. Here, we have developed an easy, quick, selective, and sensitive analytical technique to efficiently detect SMZ. Recently, transition metal oxides have attracted many researchers for their excellent performance as a promising sensor for SMZ analysis because of their superior redox activity, electrocatalytic activity, electroactive sites, and electron transfer properties. Further, Cu-based oxides have a resilient electrical conductivity; however, to boost it to an extreme extent, a composite including two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets needs to be constructed and ready as a composite (denoted as g-C3N4/Cu2Y2O5). Moreover, several techniques, including X-ray diffraction analysis, scanning electron microscopy analysis, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy were employed to analyze the composites. The electrochemical measurements have revealed that the constructed g-C3N4/Cu2Y2O5 composites exhibit great electrochemical activity. Nevertheless, the sensor achieved outstanding repeatability and reproducibility alongside a low limit of detection (LOD) of 0.23 µM, a long linear range of 2 to 276 µM, and an electrode sensitivity of 8.86 µA µM-1 cm-2. Finally, the proposed GCE/g-C3N4/Cu2Y2O5 electrode proved highly effective for detection of SMZ in food samples, with acceptable recoveries. The GCE/g-C3N4/Cu2Y2O5 electrode has been successfully applied to SMZ detection in food and water samples.
Assuntos
Cobre , Técnicas Eletroquímicas , Análise de Alimentos , Grafite , Sulfametazina , Técnicas Eletroquímicas/métodos , Grafite/química , Sulfametazina/análise , Sulfametazina/química , Cobre/química , Cobre/análise , Análise de Alimentos/métodos , Compostos de Nitrogênio/química , Limite de Detecção , Eletrodos , Contaminação de Alimentos/análise , Água/química , Reprodutibilidade dos TestesRESUMO
Sulfonamide antibiotics (SAs) are widely used antimicrobial agents in livestock and aquaculture, and most of them entering the animal's body will be released into the environment as prodrugs or metabolites, which ultimately affect human health through the food chain. Both acid deposition and salinization of soil may have an impact on the migration and degradation of antibiotics. Sulfamethazine (SM2), a frequently detected compound in agricultural soils, has a migration and transformation process in the environment that is closely dependent on environmental pH. Nevertheless, scarcely any studies have been conducted on the effect of soil pH changes on the environmental behavior of sulfamethazine. We analyzed the migration and degradation mechanisms of SM2 using simulation experiments and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) techniques. The results showed that acidic conditions limited the vertical migration of sulfadimidine, and SM2 underwent different reaction processes under different pH conditions, including S-C bond breaking, S-N bond hydrolysis, demethylation, six-membered heterocyclic addition, methyl hydroxylation and ring opening. The study of the migration pattern and degradation mechanism of SM2 under different pH conditions can provide a solid theoretical basis for assessing the pollution risk of sulfamethazine degradation products under acid rain and saline conditions, and provide a guideline for remediation of antibiotic contamination, so as to better prevent, control and protect groundwater resources.
Assuntos
Anti-Infecciosos , Concentração de Íons de Hidrogênio , Poluentes do Solo , Sulfametazina , Sulfametazina/análise , Sulfametazina/química , Poluentes do Solo/análise , Poluentes do Solo/química , Anti-Infecciosos/análise , Anti-Infecciosos/química , Cromatografia Líquida , SalinidadeRESUMO
The fertilization of agricultural soil by organic amendment that may contain antibiotics, like manure, can transfer bacterial pathogens and antibiotic-resistant bacteria to soil communities. However, the invasion by manure-borne bacteria in amended soil remains poorly understood. We hypothesized that this kind of process is both influenced by the soil properties (and those of its microbial communities) and by the presence of contaminants such as antibiotics used in veterinary care. To test that, we performed a microcosm experiment in which four different soils were amended or not with manure at an agronomical dose and exposed or not to the antibiotic sulfamethazine (SMZ). After 1 month of incubation, the diversity, structure, and composition of bacterial communities of the soils were assessed by 16S rDNA sequencing. The invasion of manure-borne bacteria was still perceptible 1 month after the soil amendment. The results obtained with the soil already amended in situ with manure 6 months prior to the experiment suggest that some of the bacterial invaders were established in the community over the long term. Even if differences were observed between soils, the invasion was mainly attributable to some of the most abundant OTUs of manure (mainly Firmicutes). SMZ exposure had a limited influence on soil microorganisms but our results suggest that this kind of contaminant can enhance the invasion ability of some manure-borne invaders.
Assuntos
Antibacterianos , Sulfametazina , Antibacterianos/farmacologia , Esterco/microbiologia , Solo , Microbiologia do Solo , Bactérias/genéticaRESUMO
The sustainable management of toner waste (T-raw) was performed via carbonization at 500 °C (T-500) and 600 °C (T-600) to produce iron oxide-nanographene nanohybrid (FeO-NG) for activating persulfate (PS) to efficiently degrade dyes (methylene blue, MB), antibiotics (sulfamethazine, SMZ), and pesticides (diazinon, DZN). Morphology, crystallinity, chemical structure, chemical composition, surface area, and pore size distribution of the synthesized materials were investigated using various analyses. High degradation ratios of MB were attained over a wide pH range (2-7), and the optimum operating conditions were determined. The FeO-NG/PS system was tested in different water matrices. MB degradation efficiency dropped from 80.13% to 78.56% after five succeeding experiments, proving the high stability of T-500. Trapping experiments proved the major role of sulfate radicals and the minor contribution of singlet oxygen. The toxicity evaluation of the treated and untreated MB solutions was conducted via measuring the cell viability, showing an increase in cell viability ratio after the degradation of MB. The degradation efficiencies of DZN and SMZ were 97.54% and 83.7%, respectively and the mineralization ratios were 74.08% and 60.37% at initial concentrations of sulfamethazine and diazinon of 50 and 100 mg/L, respectively. The high degradation efficiency of emerging micropollutants as well as the inexpensiveness, and facile synthesis of the catalyst boost the prospect of applying the proposed system on an industrial scale.
Assuntos
Sulfametazina , Poluentes Químicos da Água , Pós , Diazinon , Oxirredução , Poluentes Químicos da Água/análiseRESUMO
The emerging contaminants removal from the environment has recently been raised concerns due to their presence in higher concentrations. Over usage of emerging contaminant such as sulfamethazine poses serious threat to the aquatic and human health as well. This study deals with rationally structured a novel BiOCl (110)/NrGO/BiVO4 heterojunction which is used to detoxify sulfamethazine (SMZ) antibiotic efficiently. The synthesised composite was well characterized and the morphological analysis evidenced the formation of heterojunction consisted of nanoplates BiOCl with dominant exposed (110) facets and leaf like BiVO4 on NrGO layers. Further results revealed that the addition of BiVO4 and NrGO tremendously increased the photocatalytic degradation efficiency of BiOCl with the rate of 96.9% (k = 0.01783 min-1) towards SMZ within 60 min of visible light irradiation. Furthermore, heterojunction energy-band theory was employed to determine the degradation mechanism of SMX in this study. The larger surface area of BiOCl and NrGO layers are believed to be the reason for higher activity which facilitates the excellent charge transfer and improved light absorption. In addition, SMZ degradation products identification was carried out by LC-ESI/MS/MS to determine the pathway of degradation. The toxicity assessment was studied using E. coli as a model microorganism through colony forming unit assay (CFU), and the results indicated a significant reduction in biotoxicity was observed in 60 min of degradation process. Thus, our work gives new methods in developing various materials that effectively treat emerging contaminants from the aqueous environment.
Assuntos
Sulfametazina , Poluentes Químicos da Água , Humanos , Sulfametazina/toxicidade , Espectrometria de Massas em Tandem , Escherichia coli , Bismuto/análise , Catálise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
Melamine (MEL), enrofloxacin (ENR), sulfamethazine (SMZ), tetracycline (TC), and aflatoxin M1 (AFM1) are the main chemical contaminants in milk. It is necessary to detect these miscellaneous chemical contaminants in milk synchronously to ensure the safety of the milk. In this study, a multiple lateral flow immunoassay (LFIA) was developed for the detection of MEL, ENR, SMZ, TC, and AFM1 in milk. Under optimal experimental conditions, the cutoff values were 25 ng/mL for MEL, 1 ng/mL for ENR, 2.5 ng/mL for SMZ, 2.5 ng/mL for TC, and 0.25 ng/mL for AFM1 in milk samples. The limits of detection of LFIA were 0.173 ng/mL for MEL, 0.078 ng/mL for ENR, 0.059 ng/mL for SMZ, 0.082 ng/mL for TC, and 0.0064 ng/mL for AFM1. The recovery rates of LFIA in milk were 83.2-104.4% for MEL, 76.5-127.3% for ENR, 96.8-113.5% for SMZ, 107.1-166.6% for TC, and 93.5-130.3% for AFM1. The coefficients of variation were all less than 15%. As a whole, the developed multiple lateral flow immunoassay showed potential as a highly reliable and excellent tool for the rapid and sensitive screening of MEL, ENR, SMZ, TC, and AFM1 in milk.
Assuntos
Leite , Sulfametazina , Animais , Leite/química , Imunoensaio/veterinária , Sulfametazina/análise , Antibacterianos , Enrofloxacina , Tetraciclina , Aflatoxina M1/análise , Contaminação de Alimentos/análiseRESUMO
An ultra-efficient electro-Fenton catalyst with porous carbon coated Fe-Mo metal (FeMo@PC), was prepared by calcining MIL-53(Fe)@MoO3. This FeMo@PC-2 exhibited impressive catalytic performance for sulfamethazine (SMT) degradation with a high turnover frequency value (7.89 L/(g·min)), much better than most of reported catalysts. The mineralization current efficiency and electric energy consumption were 83.2% and 0.03 kWh/gTOC, respectively, at low current (5 mA) and small dosage of catalyst (25.0 mg/L). The removal rate of heterogeneous electro-Fenton (Hetero-EF) process catalyzed by FeMo@PC-2 was 4.58 times that of Fe@PC/Hetero-EF process. Because the internal-micro-electrolysis occurred between PC and Fe0, while the co-catalysis of Mo accelerated the rate-limiting step of the Fe3+/Fe2+ cycle and greatly improved the H2O2 utilization efficiency. The results of radical scavenger experiments and electron paramagnetic resonance confirmed the main role of surface-bound hydroxyl radical oxidation. This process was feasible to remove diverse organic contaminants such as phenol, 2,4-dichlorophenoxyacetic acid, carbamazepine and SMT. This paper enlightened the importance of the doped Mo, which could greatly improve the activity of the iron-carbon heterogeneous catalyst derived from metal-organic frameworks in EF process for efficient removal of organic contaminants.
Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Carbono , Catálise , Oxirredução , Porosidade , Sulfametazina , Poluentes Químicos da Água/análiseRESUMO
As a new type of environmental pollutant, antibiotic resistance genes (ARGs) pose a huge challenge to global health. Horizontal gene transfer (HGT) represents an important route for the spread of ARGs. The widespread use of sulfamethazine (SM2) as a broad-spectrum bacteriostatic agent leads to high residual levels in the environment, thereby increasing the spread of ARGs. Therefore, we chose to study the effect of SM2 on the HGT of ARGs mediated by plasmid RP4 from Escherichia coli (E. coli) HB101 to E. coli NK5449 as well as its mechanism of action. The results showed that compared with the control group, SM2 at concentrations of 10 mg/L and 200 mg/L promoted the HGT of ARGs, but transfer frequency decreased at concentrations of 100 mg/L and 500 mg/L. The transfer frequency at 200 mg/L was 3.04 × 10-5, which was 1.34-fold of the control group. The mechanism of SM2 improving conjugation transfer is via enhancement of the mRNA expression of conjugation genes (trbBP, trfAP) and oxidative stress genes, inhibition of the mRNA expression of vertical transfer genes, up regulation of the outer membrane protein genes (ompC, ompA), promotion of the formation of cell pores, and improvement of the permeability of cell membrane to promote the conjugation transfer of plasmid RP4. The results of this study provide theoretical support for studying the spread of ARGs in the environment.
Assuntos
Antibacterianos , Sulfametazina , Antibacterianos/farmacologia , Escherichia coli/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , RNA MensageiroRESUMO
Antibiotic pollution has become a global eco-environmental issue. To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes, phosphogypsum modified biochar composite (PMBC) was prepared via facile one-step from distillers grains, wood chips, and phosphogypsum. The physicochemical properties of PMBC were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Zeta potential, X-ray diffraction (XRD), etc. The influencing factors, adsorption behaviors, and mechanisms of sulfadiazine (SD) and sulfamethazine (SMT) onto PMBC were studied by batch and fixed bed column adsorption experiments. The results showed that the removal rates of SD and SMT increased with the increase of phosphogypsum proportion, while decreased with the increase of solution pH. The maximum adsorption capacities of modified distillers grain and wood chips biochars for SD were 2.98 and 4.18 mg/g, and for SMT were 4.40 and 8.91 mg/g, respectively, which was 9.0-22.3 times that of pristine biochar. Fixed bed column results demonstrated that PMBC had good adsorption capacities for SD and SMT. When the solution flow rate was 2.0 mL/min and the dosage of PMBC was 5.0 g, the removal rates of SD and SMT by modified wood chips biochar were both higher than 50% in 4 hr. The main mechanisms of SD and SMT removal by PMBC are hydrogen bonding, π-π donor-acceptor, electrostatic interaction, and hydrophobic interaction. This study provides an effective method for the removal of antibiotics in water and the resource utilization of phosphogypsum.
Assuntos
Antibacterianos , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/química , Carvão Vegetal/química , Sulfanilamida , Sulfametazina/química , Sulfonamidas , Sulfadiazina , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , CinéticaRESUMO
Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes that are essential for the metabolism of endogenous substrates and xenobiotics. The molecular characteristics of NATs have been extensively investigated in humans but remain to be investigated in common marmosets and pigs, animal species that are often used in drug metabolism studies. In this study, marmoset NAT1 and pig NAT1 cDNAs were isolated from liver samples and were characterized by molecular analyses and drug-metabolism assays. These NAT genes were intronless and formed gene clusters with one other NAT gene in the genome, just as human NAT genes do. Marmoset NAT1 and pig NAT1 amino acid sequences showed high sequence identities (94% and 85%, respectively) to human NAT1. Phylogenetic analysis indicated that marmoset NAT1 and pig NAT1 were more closely clustered with human NATs than with rat or mouse NATs. Marmoset NAT1 and pig NAT1 mRNAs were expressed in all the tissue types analyzed, with the expression levels being highest in the small intestine. Metabolic assays using recombinant proteins found that marmoset NAT1 and pig NAT1 metabolized human NAT substrates p-aminobenzoic acid, 2-aminofluorene, sulfamethazine, and isoniazid. Marmoset NAT1 and pig NAT1 substantially acetylated p-aminobenzoic acid and 2-aminofluorene relevant human NAT1, but their activities were lower toward sulfamethazine and isoniazid than those of the relevant human NAT2. Therefore, marmoset and pig NATs are functional enzymes with molecular similarities to human NAT1, but their substrate specificities, while similar to human NAT1, differ somewhat from human NAT2. SIGNIFICANCE STATEMENT: Marmoset N-acetyltransferase NAT1 and pig NAT1 were identified and showed high sequence identities to human NAT1. These NAT mRNAs were expressed in various tissues. Marmoset and pig NAT1s acetylated typical human NAT substrates, although their substrate specificities differed somewhat from human NAT2. Marmoset NAT1 and pig NAT1 have similarities with human NAT1 in terms of molecular and enzymatic characteristics.
Assuntos
Arilamina N-Acetiltransferase , Callithrix , Ácido 4-Aminobenzoico/metabolismo , Acetiltransferases/genética , Animais , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Callithrix/metabolismo , Fluorenos , Humanos , Isoniazida/metabolismo , Camundongos , Filogenia , Ratos , Proteínas Recombinantes/metabolismo , Sulfametazina , SuínosRESUMO
Microplastics in the environment can be colonized by microbes capable of forming biofilms, which may act as reactive coatings to affect the bioaccessibility of pollutants in organisms. This study investigated the dynamic evolution of biofilm colonization on microplastics and its impacts and mechanisms on the bioaccessibility of microplastic-associated sulfamethazine (SMT) via microcosm incubation in surface water and sediment. After 60 days of incubation, the microbial communities formed in microplastics were distinct and more diverse than those untethered in surroundings, and photoaging treatment decreased the affinity of biofilms on microplastics due to decreased hydrophobicity. Biofilm formation further enhanced the desorption and bioaccessibility of microplastic-sorbed SMT in organisms. In vitro experiments indicated that the critical effects were mainly related to the stronger interaction of gastrointestinal components (i.e., pepsin, bovine serum albumin (BSA), and NaT) with biofilm components (e.g., extracellular polymer substances) than with the pure surface of microplastics, which competed for binding sites in microplastics for SMT more significantly. Photoaging decreased the enhancing effects of biofilms due to their lower accumulation in aged microplastics. This study is the first attempt to reveal the role of biofilms in the bioaccessibility of microplastics with associated antibiotics and provide insights into the combined risk of microplastics in the environment.
Assuntos
Microplásticos , Poluentes Químicos da Água , Antibacterianos/farmacologia , Organismos Aquáticos , Biofilmes , Monitoramento Ambiental , Água Doce/química , Plásticos/farmacologia , Sulfametazina/farmacologia , Poluentes Químicos da Água/químicaRESUMO
Antibiotic residue has become an emerging environmental contaminant, while the toxicological effects and underlying mechanisms caused by the co-exposure to multiple veterinary antibiotics were rarely studied. In this study, male Sprague Dawley rats were exposed to monensin (M) (1, 2, 10 mg/(kg·body weight (BW)) combined with sulfamethazine (S) (60, 120, 600 mg/(kg·BW)) or single drugs for 28 consecutive days. The body weight, hematological and blood biochemical parameters, organ coefficients, and histopathology were analyzed to discover their combined toxicity effect. Transcriptomic analysis was used to reveal the possible mechanisms of their joint toxicity. Compared with the control group, the weight gain rate was significantly reduced in the H-M+S and H-S, and alkaline phosphatase in H-M+S was significantly increased. Furthermore, relative liver and kidneys weight was significantly increased, and the liver of H-M+S showed more severe lesions in histopathological analysis. For H-M+S, H-M and H-S, transcriptomic results showed that 344, 246, and 99 genes were differentially expressed, respectively. The Gene Ontology terms mainly differ in sterol biosynthetic process and steroid hydroxylase activity. The Kyoto Encyclopedia of Genes and Genome pathways showed abnormal retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism-cytochrome 450; the common 30 genes were screened from the network of protein-protein interaction. The results showed that mixed contamination of M and S produces hepatotoxicity by interfering with linoleic acid metabolism, retinol metabolism and CYP450 enzyme-dominated drug metabolism. Further analysis showed that Cyp1a2, Cyp2c61, Ugt1a3, and Ugt1a5 might be the key genes. These findings could provide more evidence for investigating the toxic effects and metabolism of mixed antibiotics contamination in mammals.
Assuntos
Monensin , Sulfametazina , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Peso Corporal , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Linoleico , Fígado , Masculino , Mamíferos/metabolismo , Monensin/toxicidade , Ratos , Ratos Sprague-Dawley , Esteroide Hidroxilases/metabolismo , Esteroide Hidroxilases/farmacologia , Esteróis/metabolismo , Esteróis/farmacologia , Sulfametazina/toxicidade , Transcriptoma , Vitamina A/metabolismo , Xenobióticos/metabolismoRESUMO
Protein-drug binding study addresses a broad domain of biological problems associating molecular functions to physiological processes composing and modifying safe and coherent drug therapeutics. Comparison of the binding and thermodynamic aspect of sulfa drugs, sulfamethazine (SMZ) and sulfadiazine (SDZ) with the protein, lysozyme (Lyz) was carried out using spectroscopic, molecular docking, and dynamic simulation studies. The fluorescence quenching and apparent binding constant for the binding reaction were calculated to be in the order of 104 M-1 , slightly higher for SMZ as compared to that of SDZ and the binding stoichiometry values show 1:1 drug binding with each protein molecule. The binding was an enthalpy-driven spontaneous exothermic reaction favored by a negative enthalpy and a positive entropy contribution for both the complexes. The binding from the fluorescence quenching data suggests a static quenching mechanism dominated by non-polyelectrolytic components. Synchronous fluorescence denoted a conformational change in the tryptophan moiety of the protein. Molecular docking and dynamic simulation study provided a clearer view of the interaction pattern, where the drug resides on the binding pocket of the protein structure. Overall the protein, Lyz binding of SMZ was slightly more favored over SDZ.
Assuntos
Antibacterianos , Muramidase , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Muramidase/química , Ligação Proteica , Espectrometria de Fluorescência , Sulfametazina , TermodinâmicaRESUMO
A photoelectrochemical (PEC) aptasensor based on CdSe@SnS2 nanocomposite has been developed to detect sulfamethazine (SMZ). The introduction of CdSe into SnS2 displayed an amplified PEC signal, which was higher than that of pure CdSe and SnS2, attributable to its enhanced light harvesting capacity and promoted PEC energy conversion efficiency. Due to the formation of specific non-covalent bonds, the SMZ-binding aptamer (SBA) has significant specificity and sensitivity. When SMZ was incubated on a CdSe@SnS2 modified electrode fixed with aminated SBA, the formation of the SMZ/SBA complex increased the space resistance of electron transfer and hindered the electronic migration between the electrodes, resulting in a decrease in photocurrent. The greater the adsorbed amount on the SBA, the lower the photocurrent produced. Under optimized conditions the photocurrent response of MCH/SBA/CdSe@SnS2/FTO was inversely proportional to the SMZ concentration in the range 0.1 to 100 pM, with a detection limit (3 S/N) of 0.025 pM (at 0 V vs. Hg/HgCl). The recoveries ranged from 95.8 to 104% with relative standard deviations (RSDs) < 6.3% (n = 3) in actual water sample. This PEC aptasensor which shows considerable potential in SMZ detection applications has high selectivity, reproducibility, and good stability.
Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Nanocompostos , Compostos de Selênio , Sulfametazina , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Titânio/química , Compostos de Selênio/química , Nanocompostos/químicaRESUMO
Sulfamethazine (SMZ) is one of the most used broad-spectrum antibiotics owing to its low cost and high efficacy towards bacterial diseases. This workreports a novel label-free SMZ sensor based on para-sulfonatocalix[4]arene (pSC4) capped gold nanoparticles (pSC4-AuNPs) for colorimetric detection through the host-guest interaction. The existence of SMZ resulted in the aggregation of pSC4-AuNPs and can be observed through colorimetric assay. A good linear relationship in the range 2.5 ~ 20 nM was obtained with a correlation coefficient of 0.9908. The limit of detection for SMZ was 1.39 nM. High recoveries (90.18-107.06%) were obtained, and RSD ranged from 1.21 to 2.05%. The color changes can be observed from red to gray within 10 min. Combining the supermolecule's recognition and AuNP's optical performance, the method paves a new, easy, and rapid way for small target sensing.
Assuntos
Calixarenos/química , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Sulfametazina/químicaRESUMO
There is currently a dearth of information on the determination, occurrence and ecotoxicological risk of antibiotics in dumpsite leachates and hospital wastewater in Africa. A quick, easy, cheap, effective, rugged and safe (QuEChERS) protocol which combines extraction and clean-up in one step was optimized for the determination of antibiotics sulfadoxine, sulfamethazine and trimethoprim in dumpsite leachates and hospital wastewater. The occurrence and ecotoxicological risk of target antibiotics were investigated in wastewater from two hospitals, effluent receiving water and leachates from three dumpsites in Ibadan, Nigeria. Recoveries in hospital wastewater ranged from 53 to 116% while recoveries ranged from 50 to 89% in leachates. Method limits of quantification ranged from 0.7 to 12.1 µg L-1 in hospital wastewater and from 6.2 to 38.8 µg L-1 in leachates. Intra-day precisions (% RSD) were ≤ 21%. High concentrations of target antibiotics were measured: up to 475 µg L-1 for sulfamethazine in leachates, 118 µg L-1 for trimethoprim in hospital wastewater and 117 µg L-1 for sulfadoxine in effluent receiving water. Sulfadoxine presented high risk to algae, daphnid and fish in hospital wastewater, effluent receiving water and leachates. This work highlights the need for adequate and sound management of wastes containing pharmaceuticals in Nigeria.