Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.074
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 628(8009): 776-781, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658683

RESUMO

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Assuntos
Carbono , Água Doce , Carbono/análise , Carbono/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Água Doce/química , Lagos/química , Lignina/química , Oxirredução , Oxigênio/química , Polifenóis/química , Rios/química , Suécia , Taninos/química , Ciclo do Carbono
2.
Nano Lett ; 24(33): 10380-10387, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39120059

RESUMO

The advancement of effective nasal mucoadhesive delivery faces challenges due to rapid mucociliary clearance (MCC). Conventional studies have employed mucoadhesive materials, mainly forming spherical nanoparticles, but these offer limited adhesion to the nasal mucosa. This study hypothesizes that a 2D nanoscale structure utilizing adhesive polyphenols can provide a superior strategy for countering MCC, aligning with the planar mucosal layers. We explore the use of tannic acid (TA), a polyphenolic molecule known for its adhesive properties and ability to form complexes with biomolecules. Our study introduces an unprecedented 2D nanopatch, assembled through the interaction of TA with green fluorescent protein (GFP), and cell-penetrating peptide (CPP). This 2D nanopatch demonstrates robust adhesion to nasal mucosa and significantly enhances immunoglobulin A secretions, suggesting its potential for enhancing nasal vaccine delivery. The promise of a polyphenol-enabled adhesive 2D nanopatch signifies a pivotal shift from conventional spherical nanoparticles, opening new pathways for delivery strategies through respiratory mucoadhesion.


Assuntos
Mucosa Nasal , Polifenóis , Taninos , Taninos/química , Polifenóis/química , Polifenóis/administração & dosagem , Mucosa Nasal/metabolismo , Mucosa Nasal/imunologia , Animais , Nanopartículas/química , Humanos , Peptídeos Penetradores de Células/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Adesivos/química , Depuração Mucociliar/efeitos dos fármacos , Imunoglobulina A , Camundongos
3.
Plant J ; 113(3): 576-594, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534122

RESUMO

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Assuntos
Camellia sinensis , Taninos , Taninos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
4.
Anal Chem ; 96(26): 10714-10723, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913030

RESUMO

Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.


Assuntos
Ligas , Estriol , Ouro , Nanopartículas Metálicas , Imunoensaio/métodos , Nanopartículas Metálicas/química , Ouro/química , Estriol/análise , Ligas/química , Animais , Colorimetria , Limite de Detecção , Taninos/química , Taninos/análise
5.
BMC Plant Biol ; 24(1): 226, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539101

RESUMO

BACKGROUND: Plant growth and quality are often affected by environmental factors, including geographical location, climate, and soil. In this study, we describe the effect of altitudinal differences on the growth and active ingredients in Rheum tanguticum Maxim. ex Balf. (R. tanguticum), a traditional Chinese medicinal herb known for its laxative properties. RESULTS: The results showed that plants grown at lower altitudes had better growth performances than those in higher altitude areas. The yield varied by 2.45-23.68 times with altitude, reaching a maximum of 102.01 t/ha. In addition, total anthraquinone and total sennoside contents decreased with increasing altitude, whereas total tannins increased with increasing altitude. The total anthraquinone content of the indicator compound reached 5.15% at five experimental sites, which exceeded the Chinese Pharmacopoeia standard by 70.87%. The content of the other two categories of active ingredients reached a maximum value of 0.94% (total sennosides) and 2.65% (total tannins). Redundancy analysis revealed that annual rainfall, annual average temperature, annual sunshine hours, and pH significantly affected growth and active ingredients. Moreover, key metabolites, such as flavonoids, amino acids and their derivatives, phenolic acids, lipids, and terpenes, were differentially expressed between samples from low- and high-altitude cultivation areas. These metabolites were enriched in the flavonoid and flavonol biosynthetic pathway and the monoterpene biosynthetic pathway. CONCLUSIONS: These results suggest that high anthraquinone content was observed in the lowest-latitude cultivation area due to low rainfall and alkaline soil pH. Key metabolites were significantly upregulated in high-latitude cultivation areas. These results provide a scientific basis for quality control and the systematic cultivation of R. tanguticum.


Assuntos
Rheum , Rheum/química , Taninos/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Solo
6.
Small ; 20(24): e2307628, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38191883

RESUMO

Injectable bioadhesives are attractive for managing gastric ulcers through minimally invasive procedures. However, the formidable challenge is to develop bioadhesives that exhibit high injectability, rapidly adhere to lesion tissues with fast gelation, provide reliable protection in the harsh gastric environment, and simultaneously ensure stringent standards of biocompatibility. Here, a natural bioadhesive with tunable cohesion is developed based on the facile and controllable gelation between silk fibroin and tannic acid. By incorporating a hydrogen bond disruptor (urea or guanidine hydrochloride), the inherent network within the bioadhesive is disturbed, inducing a transition to a fluidic state for smooth injection (injection force <5 N). Upon injection, the fluidic bioadhesive thoroughly wets tissues, while the rapid diffusion of the disruptor triggers instantaneous in situ gelation. This orchestrated process fosters the formed bioadhesive with durable wet tissue affinity and mechanical properties that harmonize with gastric tissues, thereby bestowing long-lasting protection for ulcer healing, as evidenced through in vitro and in vivo verification. Moreover, it can be conveniently stored (≥3 m) postdehydration. This work presents a promising strategy for designing highly injectable bioadhesives utilizing natural feedstocks, avoiding any safety risks associated with synthetic materials or nonphysiological gelation conditions, and offering the potential for minimally invasive application.


Assuntos
Ligação de Hidrogênio , Úlcera Gástrica , Animais , Úlcera Gástrica/tratamento farmacológico , Injeções , Adesivos Teciduais/química , Adesivos/química , Fibroínas/química , Taninos/química , Ratos Sprague-Dawley
7.
Small ; 20(29): e2310851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334256

RESUMO

Inspired by the timely emergence of silkworm pupae from their cocoons, silkworm chrysalis-like probiotic composites (SCPCs) are developed for the comprehensive therapy of inflammatory bowel disease (IBD), in which probiotics are enveloped as the "pupa" in a sequential layering of silk sericin (SS), tannic acid (TA), and polydopamine, akin to the protective "cocoon". Compared to unwrapped probiotics, these composites not only demonstrate exceptional resistance to the harsh gastrointestinal environment and exhibit over 200 times greater intestinal colonization but also safeguard probiotics from the damage of IBD environment while enabling probiotics sustained release. The probiotics, in synergy with SS and TA, provide a multi-crossed comprehensive therapy for IBD that simultaneously addresses various pathological features of IBD, including intestinal barrier disruption, elevated pro-inflammatory cytokines, heightened oxidative stress, and disturbances in the intestinal microbiota. SCPCs exhibit remarkable outcomes, including a 9.7-fold reduction in intestinal permeability, an 8.9-fold decrease in IL-6 levels, and a 2.9-fold reduction in TNF-α levels compared to uncoated probiotics. Furthermore, SCPCs demonstrate an impressive 92.25% reactive oxygen species clearance rate, significantly enhance the richness of beneficial intestinal probiotics, and effectively diminish the abundance of pathogenic bacteria, indicating a substantial improvement in the overall therapeutic effect of IBD.


Assuntos
Bombyx , Doenças Inflamatórias Intestinais , Probióticos , Animais , Bombyx/química , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Intestinos , Polímeros/química , Microbioma Gastrointestinal/efeitos dos fármacos , Sericinas/química , Sericinas/farmacologia , Indóis/química , Taninos/química , Taninos/farmacologia , Camundongos
8.
Microb Pathog ; 190: 106635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579934

RESUMO

The plant Erythrina indica comes under Fabaceae family, mainly used for used in traditional medicine as nervine sedative, antiepileptic, antiasthmatic, collyrium in opthalmia, antiseptic. Current study focused synthesize of silver nanoparticles (AgNPs) by E. indica leaf ethanol extract. The green-synthesized AgNPs underwent characterization using multiple analytical techniques, including UV-visible, FTIR, DLS, SEM, TEM, XRD, and EDX, and estimation of their antioxidant activity and antimicrobial activity. Phytochemical analysis identified alkaloids, tannins, saponins, flavonoids, and phenols as secondary metabolites. The Total Phenol Content (TPC) was determined to be 237.35 ± 2.02 mg GAE-1, indicating a substantial presence of phenolic compounds. The presence of AgNPs was verified through UV-Visible analysis at 420 nm, and FT-IR revealed characteristic phenolic functional groups. DLS analysis indicated a narrow size distribution (polydispersity index - PDI: 3.47%), with SEM revealing spherical AgNPs of approximately 20 nm. TEM showed homogeneous, highly polycrystalline AgNPs with lattice spacing at 0.297. XRD analysis demonstrated crystallinity and purity, with distinct reflection peaks corresponding to miller indices of JCPDS card no. 01 087 1473. In vitro, AgNPs exhibited robust antioxidant activity like; DPPH, ABTS, and H2O2, surpassing E. indica-assisted synthesis. ABTS assay indicated higher antioxidant activity (81.94 ± 0.05%) for AgNPs at 734 nm, while E. indica extraction showed 39.67 ± 0.07%. At 532 nm, both E. indica extraction (57.71 ± 0.11%) and AgNPs (37.41 ± 0.17%) exhibited H2O2 scavenging. Furthermore, AgNPs displayed significant antimicrobial properties, inhibiting Staphylococcus aureus (15.7 ± 0.12 mm) and Candida albicans (10.7 ± 0.17 mm) byfor the concentration of 80 µg/mL. Through the characterizations underscore of the potential of Erythrina indica-synthesized AgNPs, rich in polyphenolic compounds, for pharmacological, medical, biological applications and antipyretic properties.


Assuntos
Anti-Infecciosos , Antioxidantes , Erythrina , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Prata , Prata/química , Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Erythrina/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Folhas de Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Fenóis/química , Fenóis/farmacologia , Difração de Raios X , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/análise , Química Verde , Candida albicans/efeitos dos fármacos , Taninos/farmacologia , Taninos/química
9.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39223911

RESUMO

Astringency, commonly described as a drying, roughening, and/or puckering sensation associated with polyphenol-rich foods affects their palatability. While the compounds eliciting astringency are known, its mechanism of action is debated. This study investigated the role of transient receptor potential (TRP) channels A1 and V1 in astringency perception. If TRP A1 or V1 have a functional role in astringency perception, then desensitizing these receptors should decrease perceived astringency. Thirty-seven panelists underwent unilateral lingual desensitization of TRP A1 and V1 channels using mustard oil and capsaicin, respectively. Panelists then evaluated four astringent stimuli: epicatechin (EC), epigallocatechin gallate (EGCG), tannic acid (TA), and potassium alum (Alum), via 2-AFC and intensity ratings. When TRPA1 receptors were desensitized on one half of the tongue via mustard oil, no significant differences were observed between the treated and untreated sides for both 2-AFC and intensity ratings. Similarly, when TRPV1 receptors were desensitized on one half of the tongue via capsaicin, no significant differences were observed between the treated and untreated sides for both 2-AFC and intensity ratings. These findings challenge the notion that TRP channels play a pivotal role in astringency perception.


Assuntos
Capsaicina , Mostardeira , Óleos de Plantas , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Taninos , Humanos , Canais de Cátion TRPV/metabolismo , Canal de Cátion TRPA1/metabolismo , Masculino , Adulto , Feminino , Capsaicina/farmacologia , Mostardeira/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Taninos/farmacologia , Taninos/química , Canais de Potencial de Receptor Transitório/metabolismo , Adulto Jovem , Percepção Gustatória/efeitos dos fármacos , Percepção Gustatória/fisiologia , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Pessoa de Meia-Idade , Compostos de Alúmen/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Adstringentes/farmacologia , Língua/efeitos dos fármacos , Língua/metabolismo
10.
Theor Appl Genet ; 137(2): 42, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308687

RESUMO

Chilling tolerance in crops can increase resilience through longer growing seasons, drought escape, and nitrogen use efficiency. In sorghum (Sorghum bicolor [L.] Moench), breeding for chilling tolerance has been stymied by coinheritance of the largest-effect chilling tolerance locus, qSbCT04.62, with the major gene underlying undesirable grain proanthocyanidins, WD40 transcriptional regulator Tannin1. To test if this coinheritance is due to antagonistic pleiotropy of Tannin1, we developed and studied near-isogenic lines (NILs) carrying chilling tolerant haplotypes at qCT04.62. Whole-genome sequencing of the NILs revealed introgressions spanning part of the qCT04.62 confidence interval, including the Tannin1 gene and an ortholog of Arabidopsis cold regulator CBF/DREB1G. Segregation pattern of grain tannin in NILs confirmed the presence of wildtype Tannin1 and the reconstitution of a functional MYB-bHLH-WD40 regulatory complex. Low-temperature germination did not differ between NILs, suggesting that Tannin1 does not modulate this component of chilling tolerance. Similarly, NILs did not differ in seedling growth rate under either of two contrasting controlled environment chilling scenarios. Finally, while the chilling tolerant parent line had notably different photosynthetic responses from the susceptible parent line - including greater non-photochemical quenching before, during, and after chilling - the NIL responses match the susceptible parent. Thus, our findings suggest that tight linkage drag, not pleiotropy, underlies the precise colocalization of Tan1 with qCT04.62 and the qCT04.62 quantitative trait nucleotide lies outside the NIL introgressions. Breaking linkage at this locus should advance chilling tolerance breeding in sorghum and the identification of a novel chilling tolerance regulator.


Assuntos
Arabidopsis , Sorghum , Melhoramento Vegetal , Temperatura Baixa , Taninos , Plântula/genética
11.
Biomacromolecules ; 25(8): 4843-4855, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985577

RESUMO

Tannin, after lignin, is one of the most abundant sources of natural aromatic biomolecules. It has been used and chemically modified during the past few decades to create novel biobased materials. This work intended to functionalize for the first time quebracho Tannin (T) through a simple phosphorylation process in a urea system. The phosphorylation of tannin was studied by Fourier transform infrared spectroscopy (FTIR), NMR, inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray fluorescence spectrometry (XRF), while further characterization was performed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and thermogravimetric analysis (TGA) to investigate the morphology, composition, structure, and thermal degradation of the phosphorylated material. Results indicated the occurrence of phosphorylation, suggesting the insertion of phosphate-containing groups into the tannin structure, revealing a high content of phosphate for modified tannin (PT). This elevated phosphorus content serves as evidence for the successful incorporation of phosphate groups through the functionalization process. The corresponding PT and T were employed as adsorbents for methylene blue (MB) removal from aqueous solutions. The results revealed that the Langmuir isotherm model effectively represents the adsorption isotherms. Additionally, the pseudo-second-order model indicates that chemisorption predominantly controls the adsorption mechanism. This finding also supports the fact that the introduced phosphate groups via the phosphorylation process significantly contributed to the improved adsorption capacity. Under neutral pH conditions and at room temperature, the material achieved an impressive adsorption capacity of 339.26 mg·g-1 in about 2 h.


Assuntos
Azul de Metileno , Taninos , Ureia , Azul de Metileno/química , Azul de Metileno/isolamento & purificação , Taninos/química , Ureia/química , Fosforilação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
12.
Biomacromolecules ; 25(7): 4406-4419, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38847048

RESUMO

Mechanical stimuli such as strain, force, and pressure are pervasive within and beyond the human body. Mechanoresponsive hydrogels have been engineered to undergo changes in their physicochemical or mechanical properties in response to such stimuli. Relevant responses can include strain-stiffening, self-healing, strain-dependent stress relaxation, and shear rate-dependent viscosity. These features are a direct result of dynamic bonds or noncovalent/physical interactions within such hydrogels. The contributions of various types of bonds and intermolecular interactions to these behaviors are important to more fully understand the resulting materials and engineer their mechanoresponsive features. Here, strain-stiffening in carboxymethylcellulose hydrogels cross-linked with pendant dynamic-covalent boronate esters using tannic acid is studied and modulated as a function of polymer concentration, temperature, and effective cross-link density. Furthermore, these materials are found to exhibit self-healing and strain-memory, as well as strain-dependent stress relaxation and shear rate-dependent changes in gel viscosity. These features are attributed to the dynamic nature of the boronate ester cross-links, interchain hydrogen bonding and bundling, or a combination of these two intermolecular interactions. This work provides insight into the interplay of such interactions in the context of mechanoresponsive behaviors, particularly informing the design of hydrogels with tunable strain-stiffening. The multiresponsive and tunable nature of this hydrogel system therefore presents a promising platform for a variety of applications.


Assuntos
Hidrogéis , Hidrogéis/química , Viscosidade , Estresse Mecânico , Carboximetilcelulose Sódica/química , Celulose/química , Taninos/química , Ligação de Hidrogênio
13.
Biomacromolecules ; 25(6): 3519-3531, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742604

RESUMO

Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.


Assuntos
Elastina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Elastina/química , Ácido Láctico/química , Ácido Poliglicólico/química , Iridoides/química , Tropoelastina/química , Reagentes de Ligações Cruzadas/química , Taninos/química , Peptídeos/química , Elasticidade
14.
Biomacromolecules ; 25(5): 3098-3111, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38606583

RESUMO

Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.


Assuntos
Anti-Inflamatórios , Anticoagulantes , Bivalves , Poliésteres , Stents , Animais , Bivalves/química , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Stents/efeitos adversos , Anticoagulantes/química , Anticoagulantes/farmacologia , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Taninos/química , Taninos/farmacologia , Humanos , Metacrilatos
15.
Biomacromolecules ; 25(6): 3432-3448, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38771294

RESUMO

Preventing bacterial infections is a crucial aspect of wound healing. There is an urgent need for multifunctional biomaterials without antibiotics to promote wound healing. In this study, we fabricated a guar gum (GG)-based nanocomposite hydrogel, termed GBTF, which exhibited photothermal antibacterial therapy for infected wound healing. The GBTF hydrogel formed a cross-linked network through dynamic borate/diol interactions between GG and borax, thereby exhibiting simultaneously self-healing, adaptable, and injectable properties. Additionally, tannic acid (TA)/Fe3+ nanocomplexes (NCs) were incorporated into the hydrogel to confer photothermal antibacterial properties. Under the irradiation of an 808 nm near-infrared laser, the TA/Fe3+ NCs in the hydrogel could rapidly generate heat, leading to the disruption of bacterial cell membranes and subsequent bacterial eradication. Furthermore, the hydrogels exhibited good cytocompatibility and hemocompatibility, making them a precandidate for preclinical and clinical applications. Finally, they could significantly promote bacteria-infected wound healing by reducing bacterial viability, accelerating collagen deposition, and promoting epithelial remodeling. Therefore, the multifunctional GBTF hydrogel, which was composed entirely of natural substances including guar gum, borax, and polyphenol/ferric ion NCs, showed great potential for regenerating infected skin wounds in clinical applications.


Assuntos
Antibacterianos , Galactanos , Hidrogéis , Mananas , Nanocompostos , Terapia Fototérmica , Gomas Vegetais , Cicatrização , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Gomas Vegetais/farmacologia , Galactanos/química , Galactanos/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Terapia Fototérmica/métodos , Camundongos , Taninos/química , Taninos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Escherichia coli/efeitos dos fármacos , Boratos
16.
Microb Cell Fact ; 23(1): 209, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054459

RESUMO

BACKGROUND: The presence of inorganic pollutants and heavy metals in industrial effluents has become a serious threat and environmental issues. Fungi have a remarkable ability to exclude heavy metals from wastewater through biosorption in eco-friendly way. Tannase plays an important role in bioconversion of tannin, a major constituent of tannery effluent, to gallic acid which has great pharmaceutical applications. Therefore, the aim of the current study was to exploit the potential of tannase from Aspergillus glaucus and fungal biomass waste for the bioremediation of heavy metals and tannin. RESULTS: Tannase from A. glaucus was partially purified 4.8-fold by ammonium sulfate precipitation (80%). The enzyme was optimally active at pH 5.0 and 40 °C and stable at this temperature for 1 h. Tannase showed high stability at different physiological conditions, displayed about 50% of its activity at 60 °C and pH range 5.0-6.0. Immobilization of tannase was carried out using methods such. as entrapment in Na-alginate and covalent binding to chitosan. The effects of Na-alginate concentrations on the beads formation and enzyme immobilization revealed that maximum immobilization efficiency (75%) was obtained with 3% Na-alginate. A potential reusability of the immobilized enzyme was showed through keeping 70% of its relative activity up to the fourth cycle. The best bioconversion efficiency of tannic acid to gallic acid by immobilized tannase was at 40 °C with tannic acid concentration up to 50 g/l. Moreover, bioremediation of heavy metal (Cr3+, Pb2+, Cu2+, Fe3+, and Mn2+) from aqueous solution using A. glaucus biomass waste was achieved with uptake percentage of (37.20, 60.30, 55.27, 79.03 and 21.13 respectively). The biomass was successfully used repeatedly for removing Cr3+ after using desorbing agent (0.1 N HCl) for three cycles. CONCLUSION: These results shed the light on the potential use of tannase from locally isolated A. glaucus in the bioremediation of industrial tanneries contained heavy metals and tannin.


Assuntos
Aspergillus , Biodegradação Ambiental , Biomassa , Hidrolases de Éster Carboxílico , Enzimas Imobilizadas , Metais Pesados , Taninos , Taninos/metabolismo , Taninos/química , Aspergillus/enzimologia , Aspergillus/metabolismo , Metais Pesados/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática
17.
Analyst ; 149(19): 4889-4898, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39171410

RESUMO

Nanozymes, serving as synthetic alternatives to natural enzymes, offer several benefits including cost-effectiveness, enzyme-like catalytic abilities, enhanced stability, adjustable catalytic activity, easy recyclability, mild reaction conditions, and environmental friendliness. Nonetheless, the ongoing quest to develop nanozymes with enhanced activity and to delve into the catalytic mechanism remains a challenge. In our research, we effectively developed Au@CuO nanocomposites (Au@CuO Nc), replicating the functions of four enzymes found in nature: peroxidase (POD), catalase (CAT), glutathione peroxidase (GPx), and oxidase (OXD). The catalytic efficiency of Au@CuO Nc for TMB oxidation (oxTMB) was approximately 4.8 times greater than that of plain Cu2O cubes, attributed to the synergistic catalytic impact between the Au element and Cu2O within Au@CuO Nc. Mechanistic studies revealed that the novel Au@CuO Nc nanozyme greatly enhances the decomposition of H2O2 to reactive oxygen species (ROS) intermediates (˙OH, ˙O2- and 1O2), resulting in increased POD-like activity of the single-component Cu2O cubes. When an antioxidant like TA was added to the chromogenic system, it converted oxTMB into a colorless form of TMB, enabling further evaluation of TA. Hence, a colorimetric sensor was developed for the rapid and precise quantitative measurement of TA, demonstrating strong linearity between 0.3 and 2.4 µM and featuring a low detection threshold of 0.25 µM. Moreover, this sensor was effectively utilized for the assessment of TA in actual tea samples. This work innovatively proposes a simplified and reliable strategy for the advanced design of highly effective Cu-based nanozymes, enhancing enzyme-like reactions for simultaneous, on-site colorimetric probing of antioxidants.


Assuntos
Colorimetria , Cobre , Ouro , Taninos , Cobre/química , Ouro/química , Colorimetria/métodos , Taninos/química , Limite de Detecção , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Catálise , Oxirredução , Nanopartículas Metálicas/química , Materiais Biomiméticos/química , Nanocompostos/química , Benzidinas/química , Catalase/química , Catalase/metabolismo , Polifenóis
18.
Fish Shellfish Immunol ; 150: 109569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641216

RESUMO

Phlorotannins are phenolic compounds with diverse biological activities, yet their efficacy in aquatic animals currently remains unclear. This investigation scrutinized the influence of phlorotannins on the growth, immunity, antioxidant capacity, and intestinal microbiota in Litopenaeus vannamei, concurrently evaluating the potential adverse effects of phlorotannins on L. vannamei. A base diet without phlorotannins supplementation was used as a control, and 4 groups of diets with different concentrations (0, 0.5, 1.0, 2.0 g kg-1) of phlorotannins were formulated and fed to juvenile shrimp (0.25 ± 0.01 g) for 60 days followed by a 24-h challenge with Vibrio parahaemolyticus with triplicate in each group. Compared with the control, dietary 2.0 g kg-1 phlorotannins significantly improved the growth of the shrimp. The activities of enzymes related to cellular immunity, humoral immunity, and antioxidants, along with a notable upregulation in the expression of related genes, significantly increased. After V. parahaemolyticus challenge, the cumulative survival rates of the shrimp demonstrated a positive correlation with elevated concentrations of phlorotannins. In addition, the abundance of Bacteroidetes and functional genes associated with metabolism increased in phlorotannins supplementation groups. Phlorotannins did not elicit any detrimental effects on the biological macromolecules or histological integrity of the hepatopancreas or intestines. Simultaneously, it led to a significant reduction in malondialdehyde content. All results indicated that phlorotannins at concentrations of 2.0 g kg-1 can be used as safe feed additives to promote the growth, stimulate the immune response, improve the antioxidant capacity and intestinal health of L. vannamei, and an protect shrimp from damage caused by oxidative stress.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Penaeidae , Taninos , Vibrio parahaemolyticus , Animais , Penaeidae/imunologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/efeitos dos fármacos , Penaeidae/microbiologia , Ração Animal/análise , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Taninos/farmacologia , Taninos/administração & dosagem , Vibrio parahaemolyticus/fisiologia , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Distribuição Aleatória , Imunidade Inata/efeitos dos fármacos
19.
Environ Sci Technol ; 58(22): 9792-9803, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780952

RESUMO

Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Taninos , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Taninos/metabolismo , Anaerobiose , Microbiota
20.
Macromol Rapid Commun ; 45(14): e2400105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623606

RESUMO

Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol-carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1-19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.


Assuntos
Carbamatos , Raios Infravermelhos , Ferro , Poliuretanos , Taninos , Taninos/química , Poliuretanos/química , Ferro/química , Carbamatos/química , Fenóis/química , Fenol/química , Materiais Inteligentes/química , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA