Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262958

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Nicotiana , Melhoramento Vegetal , Horticultura
2.
Appl Environ Microbiol ; 90(4): e0227223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501669

RESUMO

Wastewater-based epidemiology has emerged as a valuable tool for monitoring respiratory viral diseases within communities by analyzing concentrations of viral nucleic-acids in wastewater. However, little is known about the fate of respiratory virus nucleic-acids in wastewater. Two important fate processes that may modulate their concentrations in wastewater as they move from household drains to the point of collection include sorption or partitioning to wastewater solids and degradation. This study investigated the decay kinetics of genomic nucleic-acids of seven human respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, human rhinovirus (HRV), and influenza A virus (IAV), as well as pepper mild mottle virus (PMMoV) in wastewater solids. Viruses (except for PMMoV) were spiked into wastewater solids and their concentrations were followed for 50 days at three different temperatures (4°C, 22°C, and 37°C). Viral genomic RNA decayed following first-order kinetics with decay rate constants k from 0 to 0.219 per day. Decay rate constants k were not different from 0 for all targets in solids incubated at 4°C; k values were largest at 37°C and at this temperature, k values were similar across nucleic-acid targets. Regardless of temperature, there was limited viral RNA decay, with an estimated 0% to 20% reduction, over the typical residence times of sewage in the piped systems between input and collection point (<1 day). The k values reported herein can be used directly in fate and transport models to inform the interpretation of measurements made during wastewater surveillance.IMPORTANCEUnderstanding whether or not the RNA targets quantified for wastewater-based epidemiology (WBE) efforts decay during transport between drains and the point of sample collection is critical for data interpretation. Here we show limited decay of viral RNA targets typically measured for respiratory disease WBE.


Assuntos
Ácidos Nucleicos , Infecções Respiratórias , Tobamovirus , Vírus , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , SARS-CoV-2 , RNA Viral/genética
3.
Plant Physiol ; 191(1): 369-381, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36179097

RESUMO

Cucumber green mottle mosaic virus (CGMMV) is one of the major global quarantine viruses and causes severe symptoms in Cucurbit crops, particularly with regard to fruit decay. However, the genetic mechanisms that control plant resistance to CGMMV have yet to be elucidated. Here, we found that WPRb, a weak chloroplast movement under blue light 1 and plastid movement impaired 2-related protein family gene, is recessively associated with CGMMV resistance in watermelon (Citrullus lanatus). We developed a reproducible marker based on a single non-synonymous substitution (G1282A) in WPRb, which can be used for marker-assisted selection for CGMMV resistance in watermelon. Editing of WPRb conferred greater tolerance to CGMMV. We found WPRb targets to the plasmodesmata (PD) and biochemically interacts with the CGMMV movement protein, facilitating viral intercellular movement by affecting the permeability of PD. Our findings enable us to genetically control CGMMV resistance in planta by using precise genome editing techniques targeted to WPRb.


Assuntos
Citrullus , Tobamovirus , Tobamovirus/genética , Citrullus/genética , Doenças das Plantas/genética
4.
Physiol Plant ; 176(3): e14375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837224

RESUMO

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , MicroRNAs , Nicotiana , Doenças das Plantas , Nicotiana/virologia , Nicotiana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tobamovirus/fisiologia , Tobamovirus/genética , Plantas Geneticamente Modificadas
5.
Arch Virol ; 169(5): 113, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684570

RESUMO

Many countries have identified tomato mottle mosaic virus (ToMMV) as a serious threat to tomato production. Here, we constructed and characterized infectious clones of ToMMV isolated from Japanese sweet pepper seeds. The genome of the Japanese isolate is 6399 nucleotides in length and exhibits the highest identity with previously characterized isolates. For example, it is 99.7% identical to that of the Mauritius isolate, which occurs worldwide. Phylogenetic analysis based on complete genome sequences revealed that the Japanese isolates clustered in the same clade as those from other countries. When homozygous tomato cultivars with tobamovirus resistance genes were inoculated with an infectious cDNA clone of ToMMV, the virus systemically infected tomato plants with symptoms typical of Tm-1-carrying tomato cultivars. In contrast, tomato cultivars carrying Tm-2 or Tm-22 showed symptoms only on the inoculated leaves. Furthermore, when commercial cultivars of Tm-22 heterozygous tomato were inoculated with ToMMV, systemic infections were observed in all cultivars, with infection frequencies ranging from 25 to 100%. Inoculation of heterozygous sweet pepper cultivars with tobamovirus resistance genes (L1, L3, and L4) with ToMMV resulted in an infection frequency of about 70%, but most of the infected L1, L3, and L4 cultivars were symptomless, and 10-20% showed symptoms of necrosis and yellowing. Tomato mosaic virus strain L11A, an attenuated virus, did not provide cross-protection against ToMMV and led to systemic infection with typical symptoms. These results suggest that ToMMV might cause extensive damage to existing tomato and sweet pepper cultivars commonly grown in Japan.


Assuntos
Capsicum , Genoma Viral , Filogenia , Doenças das Plantas , Sementes , Solanum lycopersicum , Doenças das Plantas/virologia , Capsicum/virologia , Japão , Solanum lycopersicum/virologia , Sementes/virologia , Genoma Viral/genética , Tobamovirus/genética , Tobamovirus/isolamento & purificação
6.
Phytopathology ; 114(6): 1276-1288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38330173

RESUMO

Mathematical models are widely used to understand the evolution and epidemiology of plant pathogens under a variety of scenarios. Here, we used this approach to analyze the effects of different traits intrinsic and extrinsic to plant-virus interactions on the dynamics of virus pathotypes in genetically heterogeneous plant-virus systems. For this, we propose an agent-based epidemiological model that includes epidemiologically significant pathogen life-history traits related to virulence, transmission, and survival in the environment and allows for integrating long- and short-distance transmission, primary and secondary infections, and within-host pathogen competition in mixed infections. The study focuses on the tobamovirus-pepper pathosystem. Model simulations allowed us to integrate pleiotropic effects of resistance-breaking mutations on different virus life-history traits into the net costs of resistance breaking, allowing for predictions on multiyear pathotype dynamics. We also explored the effects of two control measures, the use of host resistance and roguing of symptomatic plants, that modify epidemiological attributes of the pathogens to understand how their populations will respond to evolutionary pressures. One major conclusion points to the importance of pathogen competition within mixed-infected hosts as a component of the overall fitness of each pathogen that, thus, drives their multiyear dynamics.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas , Doenças das Plantas/virologia , Tobamovirus/genética , Tobamovirus/fisiologia , Tobamovirus/patogenicidade , Capsicum/virologia , Modelos Teóricos , Virulência , Modelos Biológicos , Vírus de Plantas/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Coinfecção/virologia , Resistência à Doença/genética
7.
Plant Cell Rep ; 43(4): 108, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557872

RESUMO

KEY MESSAGE: The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.


Assuntos
Capsicum , Tobamovirus , Capsicum/genética , Capsicum/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Peróxido de Hidrogênio , Oxirredução , Dissulfetos
8.
J Water Health ; 22(2): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421631

RESUMO

The study objective was to evaluate human faecal contamination impacts in the Yal-ku lagoon in the Mexican Caribbean and to estimate adenovirus infection and illness risks associated with recreational exposure during water activities. A total of 20 water samples (10 from each site × two sites) (50 L) were collected monthly over a period of 12 months from two selected sampling sites in the swimming area of the Yal-ku lagoon. The occurrence of faecal-associated viruses was explored, and human adenovirus (HAdV) and pepper mild mottle virus (PMMoV) concentrations were quantified. A quantitative microbial risk assessment (QMRA) model was used to estimate exposure and subsequent adenovirus infection and illness risk for 1 h of swimming or snorkelling. Somatic and F + -specific coliphages occurred in 100% of the samples. Both HAdV and PMMoV were detected at a 60% frequency thereby indicating persistent faecal inputs. PMMoV concentrations (44-370 GC/L) were relatively lower than the concentrations of HAdV (64-1,000 GC/L). Estimated mean adenovirus risks were greater for snorkelling than for swimming by roughly one to two orders of magnitude and estimated mean illness risks for snorkelling were >32/1,000. Human faecal contamination is frequent in the Yal-ku lagoon, which is associated with human gastrointestinal illness.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Tobamovirus , Humanos , Região do Caribe , Água , Sorbitol
9.
J Water Health ; 22(6): 967-977, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935449

RESUMO

The anaerobic membrane bioreactor (AnMBR) is a promising technology for not only water reclamation but also virus removal; however, the virus removal efficiency of AnMBR has not been fully investigated. Additionally, the removal efficiency estimation requires datasets of virus concentration in influent and effluent, but its monitoring is not easy to perform for practical operation because the virus quantification process is generally time-consuming and requires specialized equipment and trained personnel. Therefore, in this study, we aimed to identify the key, monitorable variables in AnMBR and establish the data-driven models using the selected variables to predict virus removal efficiency. We monitored operational and environmental conditions of AnMBR in Sendai, Japan and measured virus concentration once a week for six months. Spearman's rank correlation analysis revealed that the pH values of influent and mixed liquor suspended solids (MLSS) were strongly correlated with the log reduction value of pepper mild mottle virus, indicating that electrostatic interactions played a dominant role in AnMBR virus removal. Among the candidate models, the random forest model using selected variables including influent and MLSS pH outperformed the others. This study has demonstrated the potential of AnMBR as a viable option for municipal wastewater reclamation with high microbial safety.


Assuntos
Reatores Biológicos , Membranas Artificiais , Reatores Biológicos/virologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/virologia , Projetos Piloto , Purificação da Água/métodos , Purificação da Água/instrumentação , Tobamovirus/isolamento & purificação , Japão
10.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338897

RESUMO

Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant.


Assuntos
Solanum nigrum , Tobamovirus , Humanos , Virulência , Solanum nigrum/genética , DNA Complementar/genética , Filogenia , Tobamovirus/genética , Doenças das Plantas
11.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612822

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.


Assuntos
Solanum lycopersicum , Tobamovirus , Viroses , Solanum lycopersicum/genética , Frutas , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma
12.
Plant Cell Physiol ; 63(12): 1980-1993, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34977939

RESUMO

Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.


Assuntos
Solanum lycopersicum , Tobamovirus , Solanum lycopersicum/genética , Tobamovirus/genética , Fator Xa/genética , Ácidos Indolacéticos , Mutação , Doenças das Plantas
13.
BMC Plant Biol ; 23(1): 215, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098482

RESUMO

BACKGROUND: Melatonin is considered to be a polyfunctional master regulator in animals and higher plants. Exogenous melatonin inhibits plant infection by multiple diseases; however, the role of melatonin in Cucumber green mottle mosaic virus (CGMMV) infection remains unknown. RESULTS: In this study, we demonstrated that exogenous melatonin treatment can effectively control CGMMV infection. The greatest control effect was achieved by 3 days of root irrigation at a melatonin concentration of 50 µM. Exogenous melatonin showed preventive and therapeutic effects against CGMMV infection at early stage in tobacco and cucumber. We utilized RNA sequencing technology to compare the expression profiles of mock-inoculated, CGMMV-infected, and melatonin+CGMMV-infected tobacco leaves. Defense-related gene CRISP1 was specifically upregulated in response to melatonin, but not to salicylic acid (SA). Silencing CRISP1 enhanced the preventive effects of melatonin on CGMMV infection, but had no effect on CGMMV infection. We also found exogenous melatonin has preventive effects against another Tobamovirus, Pepper mild mottle virus (PMMoV) infection. CONCLUSIONS: Together, these results indicate that exogenous melatonin controls two Tobamovirus infections and inhibition of CRISP1 enhanced melatonin control effects against CGMMV infection, which may lead to the development of a novel melatonin treatment for Tobamovirus control.


Assuntos
Melatonina , Tobamovirus , Reguladores de Crescimento de Plantas , Cisteína , Melatonina/farmacologia , Tobamovirus/genética , Nicotiana/genética , Doenças das Plantas/genética
14.
Plant Physiol ; 189(2): 679-686, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262730

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is an emerging virus of the genus Tobamovirus. ToBRFV overcomes the tobamovirus resistance gene Tm-22 and is rapidly spreading worldwide. Genetic resources for ToBRFV resistance are urgently needed. Here, we show that clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9)-mediated targeted mutagenesis of four tomato (Solanum lycopersicum) homologs of TOBAMOVIRUS MULTIPLICATION1 (TOM1), an Arabidopsis (Arabidopsis thaliana) gene essential for tobamovirus multiplication, confers resistance to ToBRFV in tomato plants. Quadruple-mutant plants did not show detectable ToBRFV coat protein (CP) accumulation or obvious defects in growth or fruit production. When any three of the four TOM1 homologs were disrupted, ToBRFV CP accumulation was detectable but greatly reduced. In the triple mutant, in which ToBRFV CP accumulation was most strongly suppressed, mutant viruses capable of more efficient multiplication in the mutant plants emerged. However, these mutant viruses did not infect the quadruple-mutant plants, suggesting that the resistance of the quadruple-mutant plants is highly durable. The quadruple-mutant plants also showed resistance to three other tobamovirus species. Therefore, tomato plants with strong resistance to tobamoviruses, including ToBRFV, can be generated by CRISPR/Cas9-mediated multiplexed genome editing. The genome-edited plants could facilitate ToBRFV-resistant tomato breeding.


Assuntos
Solanum lycopersicum , Tobamovirus , Frutas/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Tobamovirus/genética
15.
Plant Physiol ; 190(4): 2366-2379, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35944218

RESUMO

Virus-induced gene silencing (VIGS) is a powerful tool for high-throughput analysis of gene function. Here, we developed the VIGS vector pCF93, from which expression of the cucumber fruit mottle mosaic virus genome is driven by the cauliflower mosaic virus 35S promoter to produce viral transcripts in inoculated plants. To test the utility of the pCF93 vector, we identified candidate genes related to male sterility (MS) in watermelon (Citrullus lanatus), which is recalcitrant to genetic transformation. Specifically, we exploited previously reported reference-based and de novo transcriptome data to define 38 differentially expressed genes between a male-sterile line and its fertile near-isogenic line in the watermelon cultivar DAH. We amplified 200- to 300-bp fragments of these genes, cloned them into pCF93, and inoculated DAH with the resulting VIGS clones. The small watermelon cultivar DAH enabled high-throughput screening using a small cultivation area. We simultaneously characterized the phenotypes associated with each of the 38 candidate genes in plants grown in a greenhouse. Silencing of 8 of the 38 candidate genes produced male-sterile flowers with abnormal stamens and no pollen. We confirmed the extent of gene silencing in inoculated flowers using reverse transcription-qPCR. Histological analysis of stamens from male-fertile and male-sterile floral buds and mature flowers revealed developmental defects and shrunken pollen sacs. Based on these findings, we propose that the pCF93 vector and our VIGS system will facilitate high-throughput analysis for the study of gene function in watermelons.


Assuntos
Citrullus , Tobamovirus , Tobamovirus/genética , Citrullus/genética , Flores/genética , Fenótipo , Inativação Gênica , Regulação da Expressão Gênica de Plantas
16.
J Exp Bot ; 74(17): 5218-5235, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235634

RESUMO

Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon.


Assuntos
Citrullus , Tobamovirus , Transcriptoma , Citrullus/genética , Citrullus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Tobamovirus/genética , Doenças das Plantas/genética
17.
Arch Virol ; 168(2): 40, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609629

RESUMO

High-throughput sequencing was used to analyze Hibiscus rosa-sinensis (family Malvaceae) plants with virus-like symptoms in Hawaii. Bioinformatic and phylogenetic analysis revealed the presence of two tobamoviruses, hibiscus latent Fort Pierce virus (HLFPV) and a new tobamovirus with the proposed name "hibiscus latent Hawaii virus" (HLHV). This is the first report of the complete sequence, genome organization, and phylogenetic characterization of a tobamovirus infecting hibiscus in Hawaii. RT-PCR with virus-specific primers and Sanger sequencing further confirmed the presence of these viruses. Inoculation experiments showed that HLFPV could be mechanically transmitted to Nicotiana benthamiana and N. tabacum, while HLHV could only be mechanically transmitted to N. benthamiana.


Assuntos
Hibiscus , Rosa , Tobamovirus , Tobamovirus/genética , Filogenia , Havaí , Genoma Viral
18.
Mol Biol Rep ; 50(6): 5165-5176, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119416

RESUMO

BACKGROUND: Genome editing technology has become one of the excellent tools for precise plant breeding to develop novel plant germplasm. The Tobacco mosaic virus (TMV) is the most prominent pathogen that infects several Solanaceae plants, such as tobacco, tomato, and capsicum, which requires critical host factors for infection and replication of its genomic RNA in the host. The Tobamovirus multiplication (TOM) genes, such as TOM1, TOM2A, TOM2B, and TOM3, are involved in the multiplication of Tobamoviruses. TOM1 is a transmembrane protein necessary for efficient TMV multiplication in several plant species. The TOM genes are crucial recessive resistance genes that act against the tobamoviruses in various plant species. METHODS AND RESULTS: The single guided RNA (sgRNA) was designed to target the first exon of the NtTOM1 gene and cloned into the pHSE401 vector. The pHSE401-NtTOM1 vector was introduced into Agrobacterium tumefaciens strain LBA4404 and then transformed into tobacco plants. The analysis on T0 transgenic plants showed the presence of the hptII and Cas9 transgenes. The sequence analysis of the NtTOM1 from T0 plants showed the indels. Genotypic evaluation of the NtTOM1 mutant lines displayed the stable inheritance of the mutations in the subsequent generations of tobacco plants. The NtTOM1 mutant lines successfully conferred resistance to TMV. CONCLUSIONS: CRISPR/Cas genome editing is a reliable tool for investigating gene function and precision breeding across different plant species, especially the species in the Solanaceae family.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Vírus do Mosaico do Tabaco/genética , Sistemas CRISPR-Cas/genética , Nicotiana/genética , Tobamovirus/genética , Plantas Geneticamente Modificadas/genética , RNA
19.
Phytopathology ; 113(9): 1697-1707, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36916761

RESUMO

Host ranges of plant viruses are poorly known, as studies have focused on pathogenic viruses in crops and adjacent wild plants. High-throughput sequencing (HTS) avoids the bias toward plant-virus interactions that result in disease. Here we study the host ranges of tobamoviruses, important pathogens of crops, using HTS analyses of an extensive sample of plant communities in four habitats of a heterogeneous ecosystem. Sequences of 17 virus operational taxonomic units (OTUs) matched references in the Tobamovirus genus, eight had narrow host ranges, and five had wide host ranges. Regardless of host range, the OTU hosts belonged to taxonomically distant families, suggesting no phylogenetic constraints in host use associated with virus adaptation, and that tobamoviruses may be host generalists. The OTUs identified as tobacco mild green mosaic virus (TMGMV), tobacco mosaic virus (TMV), pepper mild mottle virus, and Youcai mosaic virus had the largest realized host ranges that occurred across habitats and exhibited host use unrelated to the degree of human intervention. This result is at odds with assumptions that contact-transmitted viruses would be more abundant in crops than in wild plant communities and could be explained by effective seed-, contact-, or pollinator-mediated transmission or by survival in the soil. TMGMV and TMV had low genetic diversity that was not structured according to habitat or host plant taxonomy, which indicated that phenotypic plasticity allows virus genotypes to infect new hosts with no need for adaptive evolution. Our results underscore the relevance of ecological factors in host range evolution, in addition to the more often studied genetic factors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Humanos , Especificidade de Hospedeiro , Ecossistema , Doenças das Plantas , Tobamovirus/genética , Vírus do Mosaico do Tabaco/genética , Plantas , Variação Genética
20.
Pestic Biochem Physiol ; 194: 105494, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532353

RESUMO

The Tobamovirus helicase plays an important role in virus proliferation and host interaction. They can also be targets for antiviral drugs. Tobacco mosaic virus (TMV) is well controlled by ningnanmycin (NNM), but whether it acts on other virus helicases of Tobamovirus virus is not clear. In this study, we expressed and purified several Tobamovirus virus helicase proteins and analyzed the three-dimensional structures of several Tobamovirus virus helicases. In addition, the binding of Tobamovirus helicase to NNM was also studied. The docking study reveals the interaction between NNM and Tobamovirus virus helicase. Microscale Thermophoresis (MST) experiments have shown that NNM binds to Tobamovirus helicase with a dissociation constant of 4.64-12.63 µM. Therefore, these data are of great significance for the design and synthesis of new effective anti-plant virus drugs.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Citidina/farmacologia , Proteínas Virais , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA