Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 84: 37-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25494302

RESUMO

When I entered graduate school in 1963, the golden age of molecular biology had just begun, and myoglobin was the only protein with a known high-resolution structure. The romance of working out the structure of a virus by X-ray crystallography nonetheless captured both my imagination and the ensuing 15 years of my scientific life, during which "protein crystallography" began to morph into "structural biology." The course of the research recounted here follows the broader, 50-year trajectory of structural biology, as I could rarely resist opportunities to capitalize on new technologies when they opened some interesting part of biology to three-dimensional rigor. That fascination shows no sign of subsiding.


Assuntos
Bioquímica/história , Biologia Molecular/história , Tombusvirus/química , Cristalografia por Raios X , História do Século XX , História do Século XXI , Estados Unidos
2.
PLoS Pathog ; 20(3): e1012085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484009

RESUMO

Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.


Assuntos
Tombusvirus , Tombusvirus/fisiologia , Saccharomyces cerevisiae/genética , Membranas Intracelulares/metabolismo , Replicação Viral/fisiologia , Fosfolipídeos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Autofagia , Organelas/metabolismo , RNA Viral/genética
3.
J Biol Chem ; 300(5): 107218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522515

RESUMO

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Assuntos
Tombusvirus , Evolução Molecular , Fases de Leitura Aberta , Dobramento de Proteína , Estrutura Secundária de Proteína , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Homologia de Sequência de Aminoácidos , Modelos Psicológicos , Estrutura Terciária de Proteína
4.
PLoS Pathog ; 18(6): e1010653, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767596

RESUMO

Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.


Assuntos
Tombusvirus , Trifosfato de Adenosina/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Organelas , RNA Viral/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana , Tombusvirus/genética , Tombusvirus/metabolismo , Replicação Viral/genética
5.
New Phytol ; 243(5): 1917-1935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38515267

RESUMO

Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.


Assuntos
Condensados Biomoleculares , Citosol , Nepovirus , Organelas , Tombusvirus , Proteínas Virais , Replicação Viral , Nepovirus/química , Nepovirus/fisiologia , Citosol/metabolismo , Tombusvirus/química , Tombusvirus/fisiologia , Proteínas Virais/química , Nicotiana/virologia , Organelas/virologia , Condensados Biomoleculares/virologia
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33376201

RESUMO

Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.


Assuntos
Proteínas de Transporte Vesicular/metabolismo , Replicação Viral/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interações Hospedeiro-Patógeno/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Peroxissomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , RNA Viral/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo , Compartimentos de Replicação Viral/fisiologia
7.
J Virol ; 96(12): e0016821, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638821

RESUMO

Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actin network and ultimately to gain the upper hand during infection. We propose that, in the highly susceptible plants, tombusviruses efficiently subvert the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors via winning the recruitment race and overwhelming cellular defenses. IMPORTANCE Replication of positive-strand RNA viruses is affected by the recruitment of host components, which provide either proviral or antiviral functions during virus invasion of infected cells. The delivery of these host factors into the viral replication organelles (VROs), which represent the sites of viral RNA replication, depends on the cellular actin network. Using TBSV, we uncover a race between the virus and its host with the actin network as the central player. We find that in susceptible plants, tombusviruses exploit the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors. In summary, this work demonstrates that the actin network plays a major role in determining the outcome of viral infections in plants.


Assuntos
Actinas , Fatores de Restrição Antivirais , Biogênese de Organelas , Tombusvirus , Replicação Viral , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Ciclofilinas/metabolismo , Vírus de DNA/genética , RNA Viral/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae , Tombusvirus/genética , Tombusvirus/fisiologia , Proteínas Virais/metabolismo
8.
PLoS Pathog ; 17(6): e1009680, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161398

RESUMO

Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11's interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.


Assuntos
Citoesqueleto de Actina/metabolismo , Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Citosol/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
9.
PLoS Pathog ; 17(3): e1009423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33725015

RESUMO

Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Saccharomyces cerevisiae/virologia , Nicotiana/virologia
10.
Arch Virol ; 168(12): 287, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947857

RESUMO

This study focuses on the phylogenetic analysis of previously unclassified tombus-like viruses, which are characterized by the presence of homologs of the suppressor protein p19. The primary objectives of this research were to investigate the evolutionary relationships among these viruses and to explore the impact of suppressor proteins and recombination events on their evolution. A dataset comprising 94 viral sequences was analyzed to achieve these goals. The phylogenetic analysis revealed the presence of two distinct clusters within the tombus-like virus group. One cluster consisted of viruses that encoded p19-like RNA suppressors, while the other cluster comprised viruses encoding p14-like suppressors. Based on these findings, we propose the classification of PGT-pt108 as an isolate of carnation Italian ringspot virus (CIRV), and both Tombusviridae sp. s48-k141_139792 and Tombusviridae sp. s51-k141_185213 as isolates of tomato bushy stunt virus (TBSV). Furthermore, this study suggests the establishment of two new genera within the family Tombusviridae, based on the observed divergence and distinct characteristics of these tombus-like viruses. Through the analysis of recombination events, we provide insights into the interspecies movement of CIRV, which is reflected in its phylogenetic positioning. This research contributes to our understanding of the evolutionary dynamics and classification of tombus-like viruses, shedding light on the role of suppressor proteins and recombination events in their evolution and interspecies transmission.


Assuntos
Tombusviridae , Tombusvirus , Filogenia , Tombusvirus/genética , Tombusviridae/genética , Recombinação Genética , RNA Viral/genética , RNA Viral/metabolismo
11.
Arch Virol ; 168(12): 296, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985520

RESUMO

Neckar River virus (NRV), first isolated from a water sample of the Neckar River (Germany) in the 1980s, was serologically characterized as a novel tombusvirus. In this study, the complete genome sequence was determined, and an infectious full-length cDNA clone was constructed. The genome organization of NRV (DSMZ PV-0270) resembles that of tombusviruses. The genome consists of 4739 nucleotides and contains five open reading frames (ORFs) and one additional putative ORF (pX) in the 3'-terminal region. Phylogenetic analysis and sequence comparisons confirmed NRV to be a member of the species Tombusvirus neckarfluminis in the genus Tombusvirus. The infectious full-length cDNA clone was constructed using Gibson assembly and subsequent infection of Nicotiana benthamiana plants by Rhizobium radiobacter inoculation. The virus derived from the full-length cDNA clone caused symptoms resembling those caused by the wild-type virus, but slightly milder.


Assuntos
Tombusviridae , Tombusvirus , Tombusvirus/genética , Tombusviridae/genética , DNA Complementar , Filogenia , Genoma Viral , Fases de Leitura Aberta , RNA Viral/genética
12.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240259

RESUMO

Sonic hedgehog medulloblastoma (SHH-MB) accounts for 25-30% of all MBs, and conventional therapy results in severe long-term side effects. New targeted therapeutic approaches are urgently needed, drawing also on the fields of nanoparticles (NPs). Among these, plant viruses are very promising, and we previously demonstrated that tomato bushy stunt virus (TBSV), functionalized on the surface with CooP peptide, specifically targets MB cells. Here, we tested the hypothesis that TBSV-CooP can specifically deliver a conventional chemotherapeutic drug (i.e., doxorubicin, DOX) to MB in vivo. To this aim, a preclinical study was designed to verify, by histological and molecular methods, if multiple doses of DOX-TBSV-CooP were able to inhibit tumor progression of MB pre-neoplastic lesions, and if a single dose was able to modulate pro-apoptotic/anti-proliferative molecular signaling in full-blown MBs. Our results demonstrate that when DOX is encapsulated in TBSV-CooP, its effects on cell proliferation and cell death are similar to those obtained with a five-fold higher dose of non-encapsulated DOX, both in early and late MB stages. In conclusion, these results confirm that CooP-functionalized TBSV NPs are efficient carriers for the targeted delivery of therapeutics to brain tumors.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Nanopartículas , Tombusvirus , Camundongos , Animais , Meduloblastoma/metabolismo , Preparações Farmacêuticas , Proteínas Hedgehog/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Cerebelares/metabolismo , Nanopartículas/química
13.
J Virol ; 95(20): e0103421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346764

RESUMO

One of the many challenges faced by RNA viruses is the maintenance of their genomes during infections of host cells. Members of the family Tombusviridae are plus-strand RNA viruses with unmodified triphosphorylated genomic 5' termini. The tombusvirus Carnation Italian ringspot virus was used to investigate how it protects its RNA genome from attack by 5'-end-targeting degradation enzymes. In vivo and in vitro assays were employed to determine the role of genomic RNA structure in conferring protection from the 5'-to-3' exoribonuclease Xrn. The results revealed that (i) the CIRV RNA genome is more resistant to Xrn than its sg mRNAs, (ii) the genomic 5'-untranslated region (UTR) folds into a compact RNA structure that effectively and independently prevents Xrn access, (iii) the RNA structure limiting 5' access is formed by secondary and tertiary interactions that function cooperatively, (iv) the structure is also able to block access of RNA pyrophosphohydrolase to the genomic 5' terminus, and (v) the RNA structure does not stall an actively digesting Xrn. Based on its proficiency at impeding Xrn 5' access, we have termed this 5'-terminal structure an Xrn-evading RNA, or xeRNA. These and other findings demonstrate that the 5'UTR of the CIRV RNA genome folds into a complex structural conformation that helps to protect its unmodified 5' terminus from enzymatic decay during infections. IMPORTANCE The plus-strand RNA genomes of plant viruses in the large family Tombusviridae are not 5' capped. Here, we explored how a species in the type genus Tombusvirus protects its genomic 5' end from cellular nuclease attack. Our results revealed that the 5'-terminal sequence of the CIRV genome folds into a complex RNA structure that limits access of the 5'-to-3' exoribonuclease Xrn, thereby protecting it from processive degradation. The RNA conformation also impeded access of RNA pyrophosphohydrolase, which converts 5'-triphosphorylated RNA termini into 5'-monophosphorylated forms, the preferred substrate for Xrn. This study represents the first report of a higher-order RNA structure in an RNA plant virus genome independently conferring resistance to 5'-end-attacking cellular enzymes.


Assuntos
Regiões 5' não Traduzidas/genética , Estabilidade de RNA/genética , Tombusvirus/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases/genética , Exorribonucleases , Genoma Viral/genética , Conformação de Ácido Nucleico , Biossíntese de Proteínas/genética , Estabilidade de RNA/fisiologia , Vírus de RNA/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Ribonucleases/metabolismo , Relação Estrutura-Atividade , Tombusvirus/metabolismo , Proteínas Virais/metabolismo
14.
J Virol ; 95(21): e0107621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406861

RESUMO

Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.


Assuntos
Nicotiana/virologia , Organelas/virologia , Saccharomyces cerevisiae/virologia , Tombusvirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Proteínas rab de Ligação ao GTP/fisiologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Interações entre Hospedeiro e Microrganismos , Organelas/metabolismo , Doenças das Plantas/virologia , Ligação Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Nexinas de Classificação/metabolismo
15.
PLoS Pathog ; 16(10): e1008990, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035275

RESUMO

Positive-stranded (+)RNA viruses greatly exploit host cells to support viral replication. However, unlike many other pathogens, (+)RNA viruses code for only a limited number of genes, making them highly dependent on numerous co-opted host factors for supporting viral replication and other viral processes during their infections. This excessive dependence on subverted host factors, however, renders (+)RNA viruses vulnerable to host restriction factors that could block virus replication. Interestingly, cellular ATP-dependent DEAD-box RNA helicases could promote or inhibit the replication of Tomato bushy stunt virus (TBSV) replication. However, it is currently unknown what features make a particular DEAD-box helicase either pro-viral or antiviral. In this work, we succeeded in reversing the viral function of the antiviral DDX17-like RH30 DEAD-box helicase by converting it to a pro-viral helicase. We also turned the pro-viral DDX3-like RH20 helicase into an antiviral helicase through deletion of a unique N-terminal domain. We demonstrate that in the absence of the N-terminal domain, the core helicase domain becomes unhinged, showing altered specificity in unwinding viral RNA duplexes containing cis-acting replication elements. The discovery of the sequence plasticity of DEAD-box helicases that can alter recognition of different cis-acting RNA elements in the viral genome illustrates the evolutionary potential of RNA helicases in the arms race between viruses and their hosts, including key roles of RNA helicases in plant innate immunity. Overall, these findings open up the possibility to turn the pro-viral host factors into antiviral factors, thus increasing the potential antiviral arsenal of the host for the benefit of agriculture and health science.


Assuntos
RNA Helicases DEAD-box/metabolismo , Tombusvirus/genética , Replicação Viral/fisiologia , Antivirais/metabolismo , RNA Helicases DEAD-box/fisiologia , Interações Hospedeiro-Patógeno/genética , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tombusvirus/metabolismo , Replicação Viral/genética
16.
PLoS Pathog ; 16(12): e1009120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370420

RESUMO

Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Nexinas de Classificação/metabolismo , Tombusvirus/fisiologia , Proteínas do Complexo da Replicase Viral/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Células Cultivadas , Interações Hospedeiro-Patógeno/genética , Organismos Geneticamente Modificados , Fosfatidilinositóis/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Nexinas de Classificação/química , Nexinas de Classificação/fisiologia , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas do Complexo da Replicase Viral/fisiologia , Replicação Viral/genética
17.
Plant Cell Environ ; 45(1): 220-235, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564869

RESUMO

Plant viruses are important pathogens able to overcome plant defense mechanisms using their viral suppressors of RNA silencing (VSR). Small RNA pathways of bryophytes and vascular plants have significant similarities, but little is known about how viruses interact with mosses. This study elucidated the responses of Physcomitrella patens to two different VSRs. We transformed P. patens plants to express VSR P19 from tomato bushy stunt virus and VSR 2b from cucumber mosaic virus, respectively. RNA sequencing and quantitative PCR were used to detect the effects of VSRs on gene expression. Small RNA (sRNA) sequencing was used to estimate the influences of VSRs on the sRNA pool of P. patens. Expression of either VSR-encoding gene caused developmental disorders in P. patens. The transcripts of four different transcription factors (AP2/erf, EREB-11 and two MYBs) accumulated in the P19 lines. sRNA sequencing revealed that VSR P19 significantly changed the microRNA pool in P. patens. Our results suggest that VSR P19 is functional in P. patens and affects the abundance of specific microRNAs interfering with gene expression. The results open new opportunities for using Physcomitrella as an alternative system to study plant-virus interactions.


Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/virologia , Interações Hospedeiro-Patógeno/genética , Cucumovirus/genética , Cucumovirus/patogenicidade , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , MicroRNAs , Proteínas de Plantas/genética , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Plantas Geneticamente Modificadas , Interferência de RNA , Tombusvirus/genética , Tombusvirus/patogenicidade , Fatores de Transcrição/genética
18.
Nucleic Acids Res ; 48(16): 9285-9300, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32785642

RESUMO

The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.


Assuntos
Genoma Viral/genética , Conformação de Ácido Nucleico , Vírus de RNA/ultraestrutura , Proteínas Virais/genética , Pareamento de Bases , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/ultraestrutura , Tombusvirus/genética , Tombusvirus/ultraestrutura , Transcrição Gênica , Proteínas Virais/ultraestrutura , Replicação Viral/genética
19.
Proc Natl Acad Sci U S A ; 116(43): 21739-21747, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591191

RESUMO

Bacterial virulence factors or effectors are proteins targeted into host cells to coopt or interfere with cellular proteins and pathways. Viruses often coopt the same cellular proteins and pathways to support their replication in infected cells. Therefore, we screened the Legionella pneumophila effectors to probe virus-host interactions and identify factors that modulate tomato bushy stunt virus (TBSV) replication in yeast surrogate host. Among 302 Legionella effectors tested, 28 effectors affected TBSV replication. To unravel a coopted cellular pathway in TBSV replication, the identified DrrA effector from Legionella was further exploited. We find that expression of DrrA in yeast or plants blocks TBSV replication through inhibiting the recruitment of Rab1 small GTPase and endoplasmic reticulum-derived COPII vesicles into the viral replication compartment. TBSV hijacks Rab1 and COPII vesicles to create enlarged membrane surfaces and optimal lipid composition within the viral replication compartment. To further validate our Legionella effector screen, we used the Legionella effector LepB lipid kinase to confirm the critical proviral function of PI(3)P phosphoinositide and the early endosomal compartment in TBSV replication. We demonstrate the direct inhibitory activity of LegC8 effector on TBSV replication using a cell-free replicase reconstitution assay. LegC8 inhibits the function of eEF1A, a coopted proviral host factor. Altogether, the identified bacterial effectors with anti-TBSV activity could be powerful reagents in cell biology and virus-host interaction studies. This study provides important proof of concept that bacterial effector proteins can be a useful toolbox to identify host factors and cellular pathways coopted by (+)RNA viruses.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Legionella pneumophila/metabolismo , Tombusvirus/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Agrobacterium tumefaciens/virologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/virologia , Legionella pneumophila/patogenicidade , Saccharomyces cerevisiae/virologia , Nicotiana/virologia , Tombusvirus/metabolismo , Replicação Viral/fisiologia
20.
Plant Dis ; 106(11): 2773-2783, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191166

RESUMO

Between 2010 and 2018, sunflower plants exhibiting virus-like symptoms, including stunting, mottling, and chlorotic ringspots on leaves, were observed from commercial fields and research plots from four sites within three distinct counties of western Nebraska (Box Butte, Kimball, and Scotts Bluff). Near identical symptoms from field samples were reproduced on seedlings mechanically in the greenhouse on multiple occasions, confirming the presence of a sap-transmissible virus from each site. Symptomatic greenhouse-inoculated plants from the 2010 and 2011 Box Butte samples tested negative for sunflower mosaic virus (SuMV), sunflower chlorotic mottle virus (SuCMoV), and all potyviruses in general by ELISA and RT-PCR. Similar viral-like symptoms were later observed on plants in a commercial sunflower field in Kimball County in 2014, and again from volunteers in research plots in Scotts Bluff County in 2018. Samples from both of these years were again successfully reproduced on seedlings in the greenhouse as before following mechanical transmissions. Symptom expression for all years began 12 to 14 days after inoculation as mild yellow spots followed by the formation of chlorotic ringspots from the mottled pattern. The culture from 2014 tested negatively for three groups of nepoviruses via RT-PCR, ruling this group out. However, transmission electron microscopy assays of greenhouse-infected plants from both 2014 and 2018 revealed the presence of distinct, polyhedral virus particles. With the use of high throughput sequencing and RT-PCR, it was confirmed that the infections from both years were caused by a new virus in the tombusvirus genus and was proposed to be called Sunflower ring spot mottle virus (SuRSMV). Although the major objective of this project was to identify the causal agent of the disease, it became evident that the diagnostic journey itself, with all the barriers encountered on the 10-year trek, was actually more important and impactful than identification.


Assuntos
Helianthus , Tombusvirus , Helianthus/virologia , Nebraska , Doenças das Plantas/virologia , Plântula/virologia , Tombusvirus/classificação , Tombusvirus/genética , Tombusvirus/isolamento & purificação , RNA Viral/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA