RESUMO
The muscle-type nicotinic acetylcholine receptor is a transmitter-gated ion channel residing in the plasma membrane of electrocytes and striated muscle cells. It is present predominantly at synaptic junctions, where it effects rapid depolarization of the postsynaptic membrane in response to acetylcholine released into the synaptic cleft. Previously, cryo-EM of intact membrane from Torpedo revealed that the lipid bilayer surrounding the junctional receptor has a uniquely asymmetric and ordered structure, due to a high concentration of cholesterol. It is now shown that this special lipid environment influences the transmembrane (TM) folding of the protein. All five submembrane MX helices of the membrane-intact junctional receptor align parallel to the surface of the cholesterol-ordered lipids in the inner leaflet of the bilayer; also, the TM helices in the outer leaflet are splayed apart. However in the structure obtained from the same protein after extraction and incorporation in nanodiscs, the MX helices do not align to a planar surface, and the TM helices arrange compactly in the outer leaflet. Realignment of the MX helices of the nanodisc-solved structure to a planar surface converts their adjoining TM helices into an obligatory splayed configuration, characteristic of the junctional receptor. Thus, the form of the receptor sustained by the special lipid environment of the synaptic junction is the one that mediates fast synaptic transmission; whereas, the nanodisc-embedded protein may be like the extrajunctional form, existing in a disordered lipid environment.
Assuntos
Bicamadas Lipídicas , Receptores Nicotínicos , Torpedo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Animais , Torpedo/metabolismo , Microscopia Crioeletrônica , Colesterol/metabolismo , Colesterol/química , Membrana Celular/metabolismo , Dobramento de Proteína , Modelos MolecularesRESUMO
Cell membranes are complex assemblies of proteins and lipids making transient or long-term associations that have yet to be characterized at a molecular level. Here, cryo-electron microscopy is applied to determine how phospholipids and cholesterol arrange between neighboring proteins (nicotinic acetylcholine receptors) of Torpedo cholinergic membrane. The lipids exhibit distinct properties in the two leaflets of the bilayer, influenced by the protein surfaces and by differences in cholesterol concentration. In the outer leaflet, the lipids show no consistent motif away from the protein surfaces, in keeping with their assumed fluidity. In the inner leaflet, where the cholesterol concentration is higher, the lipids organize into extensive close-packed linear arrays. These arrays are built from the sterol groups of cholesterol and the initial saturated portions of the phospholipid hydrocarbon chains. Together, they create an ordered â¼7 Å-thick "skin" within the hydrophobic core of the bilayer. The packing of lipids in the arrays appears to bear a close relationship to the linear cholesterol arrays that form crystalline monolayers at the air-water interface.
Assuntos
Membrana Celular , Colesterol , Fosfolipídeos , Animais , Membrana Celular/ultraestrutura , Colesterol/metabolismo , Microscopia Crioeletrônica , Bicamadas Lipídicas , Fluidez de Membrana , Fosfolipídeos/metabolismo , TorpedoRESUMO
The Cys-loop pentameric ligand-gated ion channels comprise a dynamic group of proteins that have been extensively studied for decades, yielding a wealth of findings at both the structural and functional levels. The nicotinic acetylcholine receptor (nAChR) is no exception, as it is part of this large protein family involved in proper organismal function. Our efforts have successfully produced a highly pure nAChR in detergent complex (nAChR-DC), enabling more robust studies to be conducted on it, including beginning to experiment with high-throughput crystallization. Our homogeneous product has been identified and extensively characterized with 100% identity using Nano Lc MS/MS and MALDI ToF/ToF for each nAChR subunit. Additionally, the N-linked glycans in the Torpedo californica-nAChR (Tc-nAChR) subunits have been identified. To study this, the Tc-nAChR subunits were digested with PNGase F and the released glycans were analyzed by MALDI-ToF. The MS results showed the presence of high-mannose N-glycan in all native Tc-nAChR subunits. Specifically, the oligommanose population Man8-9GlcNac2 with peaks at m/z 1742 and 1904 ([M + Na]+ ions) were observed.
Assuntos
Nicotina , Receptores Nicotínicos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acetilcolina/metabolismo , Torpedo/metabolismo , Espectrometria de Massas em Tandem , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismoRESUMO
Catalytic activity and function of acetylcholinesterase (AChE; EC 3.1.1.7) have been recognized and studied for over a century and its quaternary and primary structures for about half a century, and its tertiary structure has been known for about 33 years. Clear understanding of relationships between the structure and the function is still pending for this enzyme. Hundreds of crystallographic, static snapshots of AChEs from different sources reveal largely one general backbone conformation with narrow entry into the active center gorge, tightly fit to accept one acetylcholine (ACh) molecule, in contrast to its high catalytic turnover. This short review of available X-ray structures of AChEs from electric ray Torpedo californica, mouse and human, finds some limited, yet consistent deviations in conformations of selected secondary structure elements of AChE relevant for its function. The observed conformational diversity of the acyl pocket loop of AChE, unlike the large Ω-loop, appears consistent with structurally dynamic INS data and solution-based SAXS experiments to explain its dominant role in controlling the size of the active center gorge opening, as well as connectivity between the immediate surroundings of the buried active Ser, and catalytically relevant sites on the AChE surface.
Assuntos
Acetilcolinesterase , Dor , Animais , Camundongos , Humanos , Domínio Catalítico , Acetilcolinesterase/metabolismo , Sítios de Ligação , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Cristalografia por Raios X , Modelos Moleculares , Inibidores da Colinesterase/química , Torpedo/metabolismo , Conformação ProteicaRESUMO
Discovery of the role of bacterial RNase J1 in termination of transcription suggests common allosteric principles and mechanistic congruency of termination between bacteria and eukaryotes, in which an unrelated RNase Xrn2/Rat1 plays a similar role.
Assuntos
Exorribonucleases , Terminação da Transcrição Genética , Animais , Bacillus subtilis , Torpedo , Transcrição GênicaRESUMO
The main objective of the present study was to find detergents that can maintain the functionality and stability of the Torpedo californica nicotinic acetylcholine receptor (Tc-nAChR). We examined the functionality, stability, and purity analysis of affinity-purified Tc-nAChR solubilized in detergents from the Cyclofos (CF) family [cyclofoscholine 4 (CF-4), cyclofoscholine 6 (CF-6), and cyclofloscholine 7 (CF-7)]. The functionality of the CF-Tc-nAChR-detergent complex (DC) was evaluated using the Two Electrode Voltage Clamp (TEVC) method. To assess stability, we used the florescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) methodology. We also performed a lipidomic analysis using Ultra-Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS) to evaluate the lipid composition of the CF-Tc-nAChR-DCs. The CF-4-Tc-nAChR-DC displayed a robust macroscopic current (- 200 ± 60 nA); however, the CF-6-Tc-nAChR-DC and CF-7-Tc-nAChR-DC displayed significant reductions in the macroscopic currents. The CF-6-Tc-nAChR and CF-4-Tc-nAChR displayed higher fractional florescence recovery. Addition of cholesterol produced a mild enhancement of the mobile fraction on the CF-6-Tc-nAChR. The lipidomic analysis revealed that the CF-7-Tc-nAChR-DC displayed substantial delipidation, consistent with the lack of stability and functional response of this complex. Although the CF-6-nAChR-DC complex retained the largest amount of lipids, it showed a loss of six lipid species [SM(d16:1/18:0); PC(18:2/14:1); PC(14:0/18:1); PC(16:0/18:1); PC(20:5/20:4), and PC(20:4/20:5)] that are present in the CF-4-nAChR-DC. Overall, the CF-4-nAChR displayed robust functionality, significant stability, and the best purity among the three CF detergents; therefore, CF-4 is a suitable candidate to prepare Tc-nAChR crystals for structural studies.
Assuntos
Detergentes , Receptores Nicotínicos , Animais , Espectrometria de Massas em Tandem , Torpedo , Receptores Nicotínicos/química , Lipídeos/química , EletrofisiologiaRESUMO
The macroscopic and microscopic morphology of the appendicular skeleton was studied in the two species Raja asterias (order Rajiformes) and Torpedo marmorata (Order Torpediniformes), comparing the organization and structural layout of pectoral, pelvic, and tail fin systems. The shape, surface area and portance of the T. marmorata pectoral fin system (hydrodynamic lift) were conditioned by the presence of the two electric organs in the disk central part, which reduced the pectoral fin surface area, suggesting a lower efficiency of the "flapping effectors" than those of R. asterias. Otherwise, radials' rays alignment, morphology and calcification pattern showed in both species the same structural layout characterized in the fin medial zone by stiffly paired columns of calcified tiles in the perpendicular plane to the flat batoid body, then revolving and in the horizontal plane to continue as separate mono-columnar rays in the fin lateral zone with a morphology suggesting fin stiffness variance between medial/lateral zone. Pelvic fins morphology was alike in the two species, however with different calcified tiles patterns of the 1st compound radial and pterygia in respect to the fin-rays articulating perpendicularly to the latter, whose tile rows lay-out was also different from that of the pectoral fins radials. The T. marmorata tail-caudal fin showed a muscular and connective scaffold capable of a significant oscillatory forward thrust. On the contrary, the R. asterias dorsal tail fins were stiffened by a scaffold of radials-like calcified segments. Histomorphology, heat-deproteination technique and morphometry provided new data on the wing-fins structural layout which can be correlated to the mechanics of the Batoid swimming behavior and suggested a cartilage-calcification process combining interstitial cartilage growth (as that of all vertebrates anlagen) and a mineral deposition with accretion of individual centers (the tiles). The resulting layout showed scattered zones of un-mineralized matrix within the calcified mass and a less compact texture of the matrix calcified fibers suggesting a possible way of fluid diffusion throughout the mineralized tissue. These observations could explain the survival of the embedded chondrocytes in absence of a canalicular system as that of the cortical bone.
Assuntos
Asterias , Rajidae , Animais , Rajidae/anatomia & histologia , Natação , Torpedo , Nadadeiras de Animais/anatomia & histologia , Anatomia Comparada , Locomoção , Fenômenos BiomecânicosRESUMO
The lipid dependence of the nicotinic acetylcholine receptor from the Torpedo electric organ has long been recognized, and one of the most consistent experimental observations is that, when reconstituted in membranes formed by zwitterionic phospholipids alone, exposure to agonist fails to elicit ion-flux activity. More recently, it has been suggested that the bacterial homolog ELIC (Erwinia chrysanthemi ligand-gated ion channel) has a similar lipid sensitivity. As a first step toward the elucidation of the structural basis of this phenomenon, we solved the structures of ELIC embedded in palmitoyl-oleoyl-phosphatidylcholine- (POPC-) only nanodiscs in both the unliganded (4.1-Å resolution) and agonist-bound (3.3 Å) states using single-particle cryoelectron microscopy. Comparison of the two structural models revealed that the largest differences occur at the level of loop C-at the agonist-binding sites-and the loops at the interface between the extracellular and transmembrane domains (ECD and TMD, respectively). On the other hand, the transmembrane pore is occluded in a remarkably similar manner in both structures. A straightforward interpretation of these findings is that POPC-only membranes frustrate the ECD-TMD coupling in such a way that the "conformational wave" of liganded-receptor gating takes place in the ECD and the interfacial M2-M3 linker but fails to penetrate the membrane and propagate into the TMD. Furthermore, analysis of the structural models and molecular simulations suggested that the higher affinity for agonists characteristic of the open- and desensitized-channel conformations results, at least in part, from the tighter confinement of the ligand to its binding site; this limits the ligand's fluctuations, and thus delays its escape into bulk solvent.
Assuntos
Microscopia Crioeletrônica , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Animais , Sítios de Ligação , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios Proteicos , Receptores Nicotínicos/metabolismo , TorpedoRESUMO
Alzheimer's disease is a multifactorial neurodegenerative disorder. Since cholinergic deficit is a major factor in this disease, two molecular targets for its treatment are the acetylcholinesterase (AChE) and the nicotinic acetylcholine receptors (nAChRs). Given that caffeine is a natural compound that behaves as an AChE inhibitor and as a partial agonist of nAChRs, the aim of this work was to synthetize more potent bifunctional caffeine analogs that modulate these two molecular targets. To this end, a theophylline structure was connected to a pyrrolidine structure through a methylene chain of different lengths (3 to 7 carbon atoms) to give compounds 7-11 All caffeine derivatives inhibited the AChE, of which compound 11 showed the strongest effect. Electrophysiological studies showed that all compounds behave as agonists of the muscle and the neuronal α7 nAChR with greater potency than caffeine. To explore whether the different analogs could affect the nAChR conformational state, the nAChR conformational-sensitive probe crystal violet (CrV) was used. Compounds 9 and 10 conduced the nAChR to a different conformational state comparable with a control nAChR desensitized state. Finally, molecular docking experiments showed that all derivatives interacted with both the catalytic and anionic sites of AChE and with the orthosteric binding site of the nAChR. Thus, the new synthetized compounds can inhibit the AChE and activate muscle and α7 nAChRs with greater potency than caffeine, which suggests that they could be useful leaders for the development of new therapies for the treatment of different neurologic diseases. SIGNIFICANCE STATEMENT: In this work we synthetized caffeine derivatives which can inhibit acetylcholinesterase and activate both muscle and α7 nicotinic acetylcholine receptors (nAChRs) with higher potency than caffeine. These analogs can be divided into two groups: a non-desensitizing and a desensitizing nAChR group. From the nAChR non-desensitizing group, we propose compound 11 as the most interesting analog for further studies since it inhibits acetylcholinesterase with the highest potency and activates the nAChRs in the picomolar range without inducing receptor desensitization.
Assuntos
Cafeína/análogos & derivados , Cafeína/síntese química , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Cafeína/metabolismo , Cafeína/farmacologia , Electrophorus , Células HEK293 , Humanos , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Torpedo , Receptor Nicotínico de Acetilcolina alfa7/químicaRESUMO
Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.
Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Animais , Receptores Nicotínicos/química , Torpedo/metabolismo , Difenilexatrieno , Londres , Fosfatidilcolinas/metabolismo , Colesterol/química , Ácidos Fosfatídicos/metabolismo , PirenosRESUMO
Applying a gendered lens to the torpedo boat's adoption (ca. 1860-1900) in the United States and Britain, this article explores the cultural dynamics of military innovation. In the nineteenth century, armored or "ironclad" warships disrupted the ideals of elite "naval manhood": an emphasis inherited from preindustrial officers on physical bravery, seamanship, and endurance. In response, a group of Anglo-American officials, artists, and authors repurposed the torpedo boat to prop up masculine heroism under threat from technical shifts. Ironically, it was a radical technology that preserved old values. This nostalgic effort explains how, in under a generation, the torpedo morphed from an "unchivalrous" weapon into an attractive investment. By refashioning cultural representations of the torpedo boat, advocates both insulated elite "naval manhood" from industrialization and upended modern naval force structures. The adoption of the torpedo boat was as much a gendered reaction to the ironclad revolution as a tactical calculation.
Assuntos
Militares , Navios , Animais , Estados Unidos , Humanos , Torpedo , Reino Unido , Militares/história , HomensRESUMO
The activity of the muscle-type Torpedo nicotinic acetylcholine receptor (nAChR) is highly sensitive to lipids, but the underlying mechanisms remain poorly understood. The nAChR transmembrane α-helix, M4, is positioned at the perimeter of each subunit in direct contact with lipids and likely plays a central role in lipid sensing. To gain insight into the mechanisms underlying nAChR lipid sensing, we used homology modeling, coevolutionary analyses, site-directed mutagenesis, and electrophysiology to examine the role of the α-subunit M4 (αM4) in the function of the adult muscle nAChR. Ala substitutions for most αM4 residues, including those in clusters of polar residues at both the N and C termini, and deletion of up to 11 C-terminal residues had little impact on the agonist-induced response. Even Ala substitutions for coevolved pairs of residues at the interface between αM4 and the adjacent helices, αM1 and αM3, had little effect, although some impaired nAChR expression. On the other hand, Ala substitutions for Thr422 and Arg429 caused relatively large losses of function, suggesting functional roles for these specific residues. Ala substitutions for aromatic residues at the αM4-αM1/αM3 interface generally led to gains of function, as previously reported for the prokaryotic homolog, the Erwinia chrysanthemi ligand-gated ion channel (ELIC). The functional effects of individual Ala substitutions in αM4 were found to be additive, although not in a completely independent manner. Our results provide insight into the structural features of αM4 that are important. They also suggest how lipid-dependent changes in αM4 structure ultimately modify nAChR function.
Assuntos
Evolução Biológica , Músculos/metabolismo , Receptores Nicotínicos/metabolismo , Substituição de Aminoácidos , Animais , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Lipídeos/análise , Modelos Moleculares , Mutagênese , Conformação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , TorpedoRESUMO
In the study, the authors evaluate the spatial distribution pattern of vermiculate electric-ray Narcine vermiculatus using geostatistical techniques to predict its spatial distribution and indicate its reproduction strategy. From January 2008 to December 2009, 3333 specimens of vermiculate electric-ray were caught. Total length (LT ), sex, maturity stage, catch location and depth were recorded for each specimen. The LT of vermiculate electric-ray ranged from 6.7-24.6 cm. The authors estimate an irregular spatial structure, with a high-density patch ( x ¯ = 53 ind. ha-1 ) located on the east coast, which concentrates 65.2% of the specimens. The high-density patch consists mainly of large juveniles (13.3-19.5 cm LT ), sub-adults (14.0-19.8 cm LT ) and young adults (14.7-21.3 cm LT ). Data indicate that adults migrate to the high-density patch to reproduce. Males reached maturity at 14.5 cm LT , whereas females reached maturity at 19.3 cm LT . Vitellogenesis in female vermiculate electric-ray begins in June; ovulation, mating, fertilization and gestation in October and birth begins in February. This indicates an annual cycle with vitellogenesis and consecutive gestation, in females synchronized in reproduction. Fecundity was 1-8 ( x ¯ = 4), and the sex ratio of embryos was 1:1. The birth occurred between February and April, with an average size at parturition of 6.3 cm LT . Incidental capture of sub-adults and adults of N. vermiculatus by bottom trawls threatens the survival of this species.
Assuntos
Elasmobrânquios , Reprodução , Animais , Feminino , Fertilidade , Masculino , Estações do Ano , Razão de Masculinidade , TorpedoRESUMO
Many neuroactive steroids potently and allosterically modulate pentameric ligand-gated ion channels, including GABAA receptors (GABAAR) and nicotinic acetylcholine receptors (nAChRs). Allopregnanolone and its synthetic analog alphaxalone are GABAAR-positive allosteric modulators (PAMs), whereas alphaxalone and most neuroactive steroids are nAChR inhibitors. In this report, we used 11ß-(p-azidotetrafluorobenzoyloxy)allopregnanolone (F4N3Bzoxy-AP), a general anesthetic and photoreactive allopregnanolone analog that is a potent GABAAR PAM, to characterize steroid-binding sites in the Torpedo α2ßγδ nAChR in its native membrane environment. We found that F4N3Bzoxy-AP (IC50 = 31 µm) is 7-fold more potent than alphaxalone in inhibiting binding of the channel blocker [3H]tenocyclidine to nAChRs in the desensitized state. At 300 µm, neither steroid inhibited binding of [3H]tetracaine, a closed-state selective channel blocker, or of [3H]acetylcholine. Photolabeling identified three distinct [3H]F4N3Bzoxy-AP-binding sites in the nAChR transmembrane domain: 1) in the ion channel, identified by photolabeling in the M2 helices of ßVal-261 and δVal-269 (position M2-13'); 2) at the interface between the αM1 and αM4 helices, identified by photolabeling in αM1 (αCys-222/αLeu-223); and 3) at the lipid-protein interface involving γTrp-453 (M4), a residue photolabeled by small lipophilic probes and promegestone, a steroid nAChR antagonist. Photolabeling in the ion channel and αM1 was higher in the nAChR-desensitized state than in the resting state and inhibitable by promegestone. These results directly indicate a steroid-binding site in the nAChR ion channel and identify additional steroid-binding sites also occupied by other lipophilic nAChR antagonists.
Assuntos
Proteínas de Peixes/química , Simulação de Acoplamento Molecular , Pregnanolona , Receptores Nicotínicos/química , Esteroides/química , Animais , Sítios de Ligação , Proteínas de Peixes/metabolismo , Pregnanolona/análogos & derivados , Pregnanolona/química , Receptores Nicotínicos/metabolismo , Esteroides/metabolismo , Tetracaína/química , TorpedoRESUMO
Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of ß-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-ß-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-ß-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.
Assuntos
Ésteres do Colesterol/química , Proteínas de Peixes/química , Receptores Nicotínicos/química , Acetilcolina/farmacologia , Animais , Detergentes/química , Potenciais Evocados/efeitos dos fármacos , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/metabolismo , Oócitos/fisiologia , Conformação Proteica em Folha beta , Receptores Nicotínicos/isolamento & purificação , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo , beta-Ciclodextrinas/químicaRESUMO
αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α-δ subunits. Three isoforms (αδ-BgTx-1-3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17-0.28â µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve-muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α-δ site as compared with α-ε or α-γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs.
Assuntos
Bungarotoxinas/química , Bungarus , Proteínas de Peixes/química , Proteínas Musculares/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Receptores Nicotínicos/metabolismo , TorpedoRESUMO
The majority of batoids are listed as Threatened (20.4%) or Data Deficient (41%) by the IUCN Red List. A key challenge to assessing Data-Deficient species is obtaining estimates of key life-history characteristics. Here, a Bayesian approach was used to estimate derived life-history characteristics from a growth model applied to the Data-Deficient Brazilian electric ray Narcine brasiliensis. The age of 170 specimens (107 females, 63 males) was estimated from vertebral centra, and total length, disc width, total weight and birth size were used in a joint estimation of sex-specific length-weight models and two-dimensional von Bertalanffy growth models. Estimates of age at length zero, age at maturity, longevity and mortality at age were derived simultaneously. The Bayesian joint modelling approach was robust to small sample sizes by adding a likelihood to constrain L0 and sharing parameters, such as Brody growth coefficient between length measurements. The median growth parameter estimates were a shared L0 = 38.8 mm, female L∞ = 515 mm, ð = 0.125 and male L∞ = 387 mm, ð = 0.194. Age at maturity was estimated to be 7.40-7.49 years for females and 4.45-4.47 years for males, whereas longevity was 22.5-22.6 years for females and 14.2 years for males depending on length measurement. Age-1 natural mortality was estimated to be 0.199-0.207 for females and 0.211-0.213 for males. The derived life-history characteristics indicate N. brasiliensis is earlier maturing, but slower growing relative to other Torpediniformes. These characteristics along with the species' endemism to southern Brazil and high by-catch rates indicate that one of the IUCN Red List threatened categories may be more appropriate for the currently Data-Deficient status. The Bayesian approach used for N. brasiliensis can prove useful for utilizing limited age-growth data in other Data-Deficient batoid species to inform necessary life characteristics for conservation and management.
Assuntos
Características de História de Vida , Modelos Biológicos , Torpedo/fisiologia , Animais , Teorema de Bayes , Tamanho Corporal , Peso Corporal , Brasil , Feminino , Longevidade , Masculino , Coluna Vertebral/crescimento & desenvolvimento , Torpedo/anatomia & histologia , Torpedo/crescimento & desenvolvimentoRESUMO
While the role of circulating ouabain-like compounds in the cardiovascular and central nervous systems, kidney and other tissues in health and disease is well documented, little is known about its effects in skeletal muscle. In this study, rats were intraperitoneally injected with ouabain (0.1-10 µg/kg for 4 days) alone or with subsequent injections of lipopolysaccharide (1 mg/kg). Some rats were also subjected to disuse for 6 h by hindlimb suspension. In the diaphragm muscle, chronic ouabain (1 µg/kg) hyperpolarized resting potential of extrajunctional membrane due to specific increase in electrogenic transport activity of the 2 Na,K-ATPase isozyme and without changes in 1 and 2 Na,K-ATPase protein content. Ouabain (10-20 nM), acutely applied to isolated intact diaphragm muscle from not injected rats, hyperpolarized the membrane to a similar extent. Chronic ouabain administration prevented lipopolysaccharide-induced (diaphragm muscle) or disuse-induced (soleus muscle) depolarization of the extrajunctional membrane. No stimulation of the 1 Na,K-ATPase activity in human red blood cells, purified lamb kidney and Torpedo membrane preparations by low ouabain concentrations was observed. Our results suggest that skeletal muscle electrogenesis is subjected to regulation by circulating ouabain via the 2 Na,K-ATPase isozyme that could be important for adaptation of this tissue to functional impairment.
Assuntos
Músculo Esquelético/metabolismo , Ouabaína/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Glicemia , Ativação Enzimática , Humanos , Isoenzimas/metabolismo , Cinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ouabaína/sangue , Ouabaína/farmacologia , Ratos , Ovinos , TorpedoRESUMO
Starting from 9-methyl-1,2,3,4,9,9a-hexahydro-4aH-pyrido[2,3-b]indol-4a-ol, or indole-3-acetonitrile, 40 new calycanthaceous alkaloid analogs were synthesized in excellent yields. The prepared compounds were evaluated for biological activity against acetylcholinesterase and a broad range of plant pathogen fungi. The results of bioassays indicated that the majority of tested compounds displayed comparable or better in vitro bioactivity than the positive control. Notably, compounds b8 and b9 showed higher activity against Verticillium dahlia than chlorothalonil, with MIC values of 62.5 and 7.81⯵gâ¯mL-1, respectively. Compound b3 had a higher activity against Bacillus cereus, with a MIC value of 15.63⯵gâ¯mL-1. Compounds c2 and c11 revealed potent activity against acetylcholinesterase, with MIC values of 0.01 and 0.1â¯ngâ¯mL-1, respectively. Analysis of the molecular docking modes of c2 and c11 with Torpedo californica acetylcholinesterase indicated a medium strong hydrogen bond interaction between the hydroxyl groups of both the ligands and the phenolic hydroxyl of Try121 at a distance of approximately 2.4â¯Å. The results obtained in this study will be useful for the further design and structural optimization of calycanthaceous alkaloids as potential agrochemical lead compounds for plant disease control.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Inibidores da Colinesterase/farmacologia , Alcaloides Indólicos/farmacologia , Pirróis/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antifúngicos/síntese química , Antifúngicos/metabolismo , Bactérias/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Fungos/efeitos dos fármacos , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirróis/síntese química , Pirróis/metabolismo , Relação Estrutura-Atividade , TorpedoRESUMO
Due to recently discovered non-classical acetylcholinesterase (AChE) function, dual binding-site AChE inhibitors have acquired a paramount attention of drug designing researchers. The unique structural arrangements of AChE peripheral anionic site (PAS) and catalytic site (CAS) joined by a narrow gorge, prompted us to design the inhibitors that can interact with dual binding sites of AChE. Eighteen homo- and heterodimers of desloratadine and carbazole (already available tricyclic building blocks) were synthesized and tested for their inhibition potential against electric eel acetylcholinesterase (eeAChE) and equine serum butyrylcholinesterase (eqBChE). We identified a six-carbon tether heterodimer of desloratadine and indanedione based tricyclic dihydropyrimidine (4c) as potent and selective inhibitor of eeAChE with IC50 value of 0.09⯱â¯0.003⯵M and 1.04⯱â¯0.08⯵M (for eqBChE) with selectivity index of 11.1. Binding pose analysis of potent inhibitors suggest that tricyclic ring is well accommodated into the AChE active site through hydrophobic interactions with Trp84 and Trp279. The indanone ring of most active heterodimer 4b is stabilized into the bottom of the gorge and forms hydrogen bonding interactions with the important catalytic triad residue Ser200.