RESUMO
Dendritic cells (DCs) play a critical role in orchestrating adaptive immune responses due to their unique ability to initiate T cell responses and direct their differentiation into effector lineages. Classical DCs have been divided into two subsets, cDC1 and cDC2, based on phenotypic markers and their distinct abilities to prime CD8 and CD4 T cells. While the transcriptional regulation of the cDC1 subset has been well characterized, cDC2 development and function remain poorly understood. By combining transcriptional and chromatin analyses with genetic reporter expression, we identified two principal cDC2 lineages defined by distinct developmental pathways and transcriptional regulators, including T-bet and RORγt, two key transcription factors known to define innate and adaptive lymphocyte subsets. These novel cDC2 lineages were characterized by distinct metabolic and functional programs. Extending our findings to humans revealed conserved DC heterogeneity and the presence of the newly defined cDC2 subsets in human cancer.
Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Heterogeneidade Genética , Neoplasias/imunologia , Imunidade Adaptativa/genética , Animais , Diferenciação Celular/imunologia , Cromatina/genética , Células Dendríticas/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Inata/genética , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Neoplasias/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcrição Gênica/imunologiaRESUMO
CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Epigênese Genética/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Transcrição Gênica/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Epigênese Genética/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/terapia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Gênica/genéticaRESUMO
Systemic immunosuppression greatly affects the chemotherapeutic antitumor effect. Here, we showed that CD19+ extracellular vesicles (EVs) from B cells through CD39 and CD73 vesicle-incorporated proteins hydrolyzed ATP from chemotherapy-treated tumor cells into adenosine, thus impairing CD8+ T cell responses. Serum CD19+ EVs were increased in tumor-bearing mice and patients. Patients with fewer serum CD19+ EVs had a better prognosis after chemotherapy. Upregulated hypoxia-inducible factor-1α (HIF-1α) promoted B cells to release CD19+ EVs by inducing Rab27a mRNA transcription. Rab27a or HIF-1α deficiency in B cells inhibited CD19+ EV production and improved the chemotherapeutic antitumor effect. Silencing of Rab27a in B cells by inactivated Epstein-Barr viruses carrying Rab27a siRNA greatly improved chemotherapeutic efficacy in humanized immunocompromised NOD PrkdcscidIl2rg-/- mice. Thus, decreasing CD19+ EVs holds high potential to improve the chemotherapeutic antitumor effect.
Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Vesículas Extracelulares/imunologia , Animais , Antígenos CD19/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Herpesvirus Humano 4/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células NIH 3T3 , RNA Mensageiro/imunologia , Transcrição Gênica/imunologia , Proteínas rab27 de Ligação ao GTP/imunologiaRESUMO
The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.
Assuntos
Diferenciação Celular/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Centro Germinativo/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.
Assuntos
Infecções Assintomáticas , COVID-19/imunologia , COVID-19/virologia , RNA Polimerases Dirigidas por DNA/imunologia , Células T de Memória/imunologia , SARS-CoV-2/imunologia , Soroconversão , Proliferação de Células , Estudos de Coortes , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Feminino , Pessoal de Saúde , Humanos , Masculino , Proteínas de Membrana/imunologia , Células T de Memória/citologia , Complexos Multienzimáticos/imunologia , SARS-CoV-2/enzimologia , SARS-CoV-2/crescimento & desenvolvimento , Transcrição Gênica/imunologiaRESUMO
The recognized diversity of innate lymphoid cells (ILCs) is rapidly expanding. Three ILC classes have emerged, ILC1, ILC2 and ILC3, with ILC1 and ILC3 including several subsets. The classification of some subsets is unclear, and it remains controversial whether natural killer (NK) cells and ILC1 cells are distinct cell types. To address these issues, we analyzed gene expression in ILCs and NK cells from mouse small intestine, spleen and liver, as part of the Immunological Genome Project. The results showed unique gene-expression patterns for some ILCs and overlapping patterns for ILC1 cells and NK cells, whereas other ILC subsets remained indistinguishable. We identified a transcriptional program shared by small intestine ILCs and a core ILC signature. We revealed and discuss transcripts that suggest previously unknown functions and developmental paths for ILCs.
Assuntos
Imunidade Inata/genética , Imunidade Inata/imunologia , Linfócitos/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/fisiologia , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Long noncoding RNAs are emerging as important regulators of cellular functions, but little is known of their role in the human immune system. Here we investigated long intergenic noncoding RNAs (lincRNAs) in 13 subsets of T lymphocytes and B lymphocytes by next-generation sequencing-based RNA sequencing (RNA-seq analysis) and de novo transcriptome reconstruction. We identified over 500 previously unknown lincRNAs and described lincRNA signatures. Expression of linc-MAF-4, a chromatin-associated lincRNA specific to the TH1 subset of helper T cells, was inversely correlated with expression of MAF, a TH2-associated transcription factor. Downregulation of linc-MAF-4 skewed T cell differentiation toward the TH2 phenotype. We identified a long-distance interaction between the genomic regions of the gene encoding linc-MAF-4 and MAF, where linc-MAF-4 associated with the chromatin modifiers LSD1 and EZH2; this suggested that linc-MAF-4 regulated MAF transcription through the recruitment of chromatin modifiers. Our results demonstrate a key role for lincRNA in T lymphocyte differentiation.
Assuntos
Fatores de Transcrição Maf/genética , RNA Longo não Codificante/genética , Linfócitos T/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Humanos , Fatores de Transcrição Maf/imunologia , RNA Longo não Codificante/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Transcriptoma/genética , Transcriptoma/imunologiaRESUMO
Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive rediversification of B cell receptors (BCRs), but the underlying mechanisms remain unresolved. Here, the integrated specificity and function of individual memory B cell progeny revealed ongoing evolution of polyclonal antibody specificities through germinal center (GC)-specific transcriptional activity. At the clonal and subclonal levels, single-cell expression of the genes encoding the costimulatory molecule CD83 and the DNA polymerase Polη segregated the secondary GC transcriptional program into four stages that regulated divergent mechanisms of memory BCR evolution. Our studies demonstrate that vaccine boosts reactivate a cyclic program of GC function in class-switched memory B cells to remodel existing antibody specificities and enhance durable immunological protection.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Memória Imunológica/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Anticorpos/imunologia , Formação de Anticorpos/imunologia , Antígenos CD/imunologia , DNA Polimerase Dirigida por DNA/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/imunologia , Antígeno CD83RESUMO
Distinct molecular pathways govern the differentiation of CD8+ effector T cells into memory or exhausted T cells during acute and chronic viral infection, but these are not well studied in humans. Here, we employed an integrative systems immunology approach to identify transcriptional commonalities and differences between virus-specific CD8+ T cells from patients with persistent and spontaneously resolving hepatitis C virus (HCV) infection during the acute phase. We observed dysregulation of metabolic processes during early persistent infection that was linked to changes in expression of genes related to nucleosomal regulation of transcription, T cell differentiation, and the inflammatory response and correlated with subject age, sex, and the presence of HCV-specific CD4+ T cell populations. These early changes in HCV-specific CD8+ T cell transcription preceded the overt establishment of T cell exhaustion, making this signature a prime target in the search for the regulatory origins of T cell dysfunction in chronic viral infection.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Transcrição Gênica/imunologia , Doença Aguda , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Adulto , Idoso , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/imunologia , Variação Genética/imunologia , Hepacivirus/fisiologia , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fatores de Tempo , Adulto JovemRESUMO
Stimulator of IFN genes (STING) is a critical component of the innate immune system, playing an essential role in defending against DNA virus infections. However, the mechanisms governing basal STING regulation remain poorly understood. In this study, we demonstrate that the basal level of STING is critically maintained by hypoxia-inducible factor 1 (HIF-1)α through transcription. Under normal conditions, HIF-1α binds constitutively to the promoter region of STING, actively promoting its transcription. Knocking down HIF-1α results in a decrease in STING expression in multiple cell lines and zebrafish, which in turn reduces cellular responses to synthetic dsDNAs, including cell signaling and IFN production. Moreover, this decrease in STING levels leads to an increase in cellular susceptibility to DNA viruses HSV-1 and pseudorabies virus. These findings unveil a (to our knowledge) novel role of HIF-1α in maintaining basal STING levels and provide valuable insights into STING-mediated antiviral activities and associated diseases.
Assuntos
Herpesvirus Humano 1 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Imunidade Inata , Proteínas de Membrana , Peixe-Zebra , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peixe-Zebra/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Suídeo 1/imunologia , Imunidade Celular , Regulação da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Regiões Promotoras Genéticas , Células HEK293 , Linhagem Celular , Herpes Simples/imunologia , Pseudorraiva/imunologiaRESUMO
The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens1. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity2. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence3-5. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.
Assuntos
Endotélio/imunologia , Células Epiteliais/imunologia , Fibroblastos/imunologia , Regulação da Expressão Gênica/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Especificidade de Órgãos/imunologia , Imunidade Adaptativa , Animais , Cromatina/genética , Cromatina/metabolismo , Endotélio/citologia , Epigênese Genética/imunologia , Epigenoma/genética , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Sistema Imunitário/virologia , Imunidade Inata , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Especificidade de Órgãos/genética , Transcrição Gênica/imunologia , Transcriptoma/genéticaRESUMO
The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.
Assuntos
Algoritmos , Regulação da Expressão Gênica/imunologia , Sistema Imunitário/metabolismo , Transcrição Gênica/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/imunologia , Humanos , Sistema Imunitário/citologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transativadores/genética , Transativadores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transcriptoma/genética , Transcriptoma/imunologiaRESUMO
Cell-mediated immunity critically depends on the localization of lymphocytes at sites of infection. While some memory T cells recirculate, a distinct lineage (resident memory T cells (T(RM) cells)) are embedded in nonlymphoid tissues (NLTs) and mediate potent protective immunity. However, the defining transcriptional basis for the establishment of T(RM) cells is unknown. We found that CD8(+) T(RM) cells lacked expression of the transcription factor KLF2 and its target gene S1pr1 (which encodes S1P1, a receptor for sphingosine 1-phosphate). Forced expression of S1P1 prevented the establishment of T(RM) cells. Cytokines that induced a T(RM) cell phenotype (including transforming growth factor-ß (TGF-ß), interleukin 33 (IL-33) and tumor-necrosis factor) elicited downregulation of KLF2 expression in a pathway dependent on phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt, which suggested environmental regulation. Hence, regulation of KLF2 and S1P1 provides a switch that dictates whether CD8(+) T cells commit to recirculating or tissue-resident memory populations.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Regulação para Baixo/imunologia , Memória Imunológica/imunologia , Receptores de Lisoesfingolipídeo/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo , Interleucina-33 , Interleucinas/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/imunologia , Fatores de Transcrição Kruppel-Like/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores de Esfingosina-1-Fosfato , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
The nature of gut intraepithelial lymphocytes (IELs) lacking antigen receptors remains controversial. Herein we showed that, in humans and in mice, innate intestinal IELs expressing intracellular CD3 (iCD3(+)) differentiate along an Id2 transcription factor (TF)-independent pathway in response to TF NOTCH1, interleukin-15 (IL-15), and Granzyme B signals. In NOTCH1-activated human hematopoietic precursors, IL-15 induced Granzyme B, which cleaved NOTCH1 into a peptide lacking transcriptional activity. As a result, NOTCH1 target genes indispensable for T cell differentiation were silenced and precursors were reprogrammed into innate cells with T cell marks including intracellular CD3 and T cell rearrangements. In the intraepithelial lymphoma complicating celiac disease, iCD3(+) innate IELs acquired gain-of-function mutations in Janus kinase 1 or Signal transducer and activator of transcription 3, which enhanced their response to IL-15. Overall we characterized gut T cell-like innate IELs, deciphered their pathway of differentiation and showed their malignant transformation in celiac disease.
Assuntos
Doença Celíaca/imunologia , Interleucina-15/imunologia , Intestinos/imunologia , Linfoma/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Granzimas/imunologia , Humanos , Proteína 2 Inibidora de Diferenciação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor Notch1/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologiaRESUMO
Changes in population density lead to phenotypic differentiation of solitary and gregarious locusts, which display different resistance to fungal pathogens; however, how to regulate their cellular immune strategies remains unknown. Here, our stochastic simulation of pathogen proliferation suggested that humoral defense always enhanced resistance to fungal pathogens, while phagocytosis sometimes reduced defense against pathogens. Further experimental data proved that gregarious locusts had significantly decreased phagocytosis of hemocytes compared to solitary locusts. Additionally, transcriptional analysis showed that gregarious locusts promoted immune effector expression (gnbp1 and dfp) and reduced phagocytic gene expression (eater) and the cytokine tumor necrosis factor (TNF). Interestingly, higher expression of the cytokine TNF in solitary locusts simultaneously promoted eater expression and inhibited gnbp1 and dfp expression. Moreover, inhibition of TNF increased the survival of solitary locusts, and injection of TNF decreased the survival of gregarious locusts after fungal infection. Therefore, our results indicate that the alerted expression of TNF regulated the immune strategy of locusts to adapt to environmental changes.
Assuntos
Gafanhotos/imunologia , Gafanhotos/microbiologia , Imunidade Celular/imunologia , Metarhizium/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Expressão Gênica/imunologia , Fagocitose/imunologia , Densidade Demográfica , Transcrição Gênica/imunologiaRESUMO
Antibody class defines function in B cell immunity, but how class is propagated into B cell memory remains poorly understood. Here we demonstrate that memory B cell subsets unexpectedly diverged across antibody class through differences in the effects of major transcriptional regulators. Conditional genetic deletion of the gene encoding the transcription factor T-bet selectively blocked the formation and antigen-specific response of memory B cells expressing immunoglobulin G2a (IgG2a) in vivo. Cell-intrinsic expression of T-bet regulated expression of the transcription factor STAT1, steady-state cell survival and transcription of IgG2a-containing B cell antigen receptors (BCRs). In contrast, the transcription factor RORα and not T-bet was expressed in IgA(+) memory B cells, with evidence that knockdown of RORα mRNA expression and chemical inhibition of transcriptional activity also resulted in lower survival and BCR expression of IgA(+) memory B cells. Thus, divergent transcriptional regulators dynamically maintain subset integrity to promote specialized immune function in class-specific memory B cells.
Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Switching de Imunoglobulina/imunologia , Memória Imunológica/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Proteínas com Domínio T/imunologia , Animais , Linfócitos B/classificação , Citometria de Fluxo , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores de Antígenos de Linfócitos B/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/imunologia , Organismos Livres de Patógenos Específicos , Proteínas com Domínio T/genética , Transcrição Gênica/imunologiaRESUMO
Macrophages undergo metabolic rewiring during polarization but details of this process are unclear. In this issue of Immunity, Jha et al. (2015) report a systems approach for unbiased analysis of cellular metabolism that reveals key metabolites and metabolic pathways required for distinct macrophage polarization states.
Assuntos
Redes Reguladoras de Genes/imunologia , Imunidade Inata , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Transcrição Gênica/imunologia , AnimaisRESUMO
Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1(-/-) mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1(-/-) and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. VIDEO ABSTRACT.
Assuntos
Hepatócitos/imunologia , Interferon Tipo I/imunologia , Estresse Oxidativo/imunologia , Superóxido Dismutase/imunologia , Animais , Antioxidantes/metabolismo , Hepatite Viral Animal/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Transdução de Sinais/imunologia , Superóxido Dismutase-1 , Linfócitos T/imunologia , Transcrição Gênica/imunologiaRESUMO
Macrophage polarization involves a coordinated metabolic and transcriptional rewiring that is only partially understood. By using an integrated high-throughput transcriptional-metabolic profiling and analysis pipeline, we characterized systemic changes during murine macrophage M1 and M2 polarization. M2 polarization was found to activate glutamine catabolism and UDP-GlcNAc-associated modules. Correspondingly, glutamine deprivation or inhibition of N-glycosylation decreased M2 polarization and production of chemokine CCL22. In M1 macrophages, we identified a metabolic break at Idh, the enzyme that converts isocitrate to alpha-ketoglutarate, providing mechanistic explanation for TCA cycle fragmentation. (13)C-tracer studies suggested the presence of an active variant of the aspartate-arginosuccinate shunt that compensated for this break. Consistently, inhibition of aspartate-aminotransferase, a key enzyme of the shunt, inhibited nitric oxide and interleukin-6 production in M1 macrophages, while promoting mitochondrial respiration. This systems approach provides a highly integrated picture of the physiological modules supporting macrophage polarization, identifying potential pharmacologic control points for both macrophage phenotypes.
Assuntos
Redes Reguladoras de Genes/imunologia , Imunidade Inata , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Transcrição Gênica/imunologia , Animais , Ácido Argininossuccínico/imunologia , Ácido Argininossuccínico/metabolismo , Aspartato Aminotransferase Mitocondrial/genética , Aspartato Aminotransferase Mitocondrial/imunologia , Ácido Aspártico/imunologia , Ácido Aspártico/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/imunologia , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica , Glutamina/deficiência , Glicosilação , Interleucina-6/genética , Interleucina-6/imunologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Macrófagos/classificação , Macrófagos/citologia , Macrófagos/imunologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/imunologia , Óxido Nítrico/imunologia , Óxido Nítrico/metabolismo , Transdução de Sinais , Uridina Difosfato N-Acetilglicosamina/imunologia , Uridina Difosfato N-Acetilglicosamina/metabolismoRESUMO
IgH class switch recombination (CSR) replaces Cµ constant region (CH) exons with one of six downstream CHs by joining transcription-targeted double-strand breaks (DSBs) in the Cµ switch (S) region to DSBs in a downstream S region. Chromatin loop extrusion underlies fundamental CSR mechanisms including 3'IgH regulatory region (3'IgHRR)-mediated S region transcription, CSR center formation, and deletional CSR joining. There are 10 consecutive CTCF-binding elements (CBEs) downstream of the 3'IgHRR, termed the "3'IgH CBEs." Prior studies showed that deletion of eight 3'IgH CBEs did not detectably affect CSR. Here, we report that deletion of all 3'IgH CBEs impacts, to varying degrees, germline transcription and CSR of upstream S regions, except that of Sγ1. Moreover, deletion of all 3'IgH CBEs rendered the 6-kb region just downstream highly transcribed and caused sequences within to be aligned with Sµ, broken, and joined to form aberrant CSR rearrangements. These findings implicate the 3'IgH CBEs as critical insulators for focusing loop extrusion-mediated 3'IgHRR transcriptional and CSR activities on upstream CH locus targets.