Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 133(3): 277-288, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090759

RESUMO

INTRODUCTION: Lysosomal storage disorders and peroxisomal disorders are rare diseases caused by the accumulation of substrates of the metabolic pathway within lysosomes and peroxisomes, respectively. Owing to the rarity of these diseases, the prevalence of lysosomal storage disorders and peroxisomal disorders in Japan is unknown. Therefore, we conducted a nationwide survey to estimate the number of patients with lysosomal storage disorders and peroxisomal disorders in Japan. METHODS: A nationwide survey was conducted following the "Manual of nationwide epidemiological survey for understanding patient number and clinical epidemiology of rare diseases (3rd version)". A questionnaire asking for detailed information, such as disease phenotypes and medical history, was created and sent to 504 institutions with doctors who have experience in treating patients with lysosomal storage disorders and peroxisomal disorders. Result A total of 303 completed questionnaires were collected from 504 institutions (response rate: 60.1%). The number of patients was estimated by calculating the rate/frequency of overlap. The estimated number of patients was 1658 (±264.8) for Fabry disease, 72 (±11.3) for mucopolysaccharidosis I, 275 (±49.9) for mucopolysaccharidosis II, 211 (±31.3) for Gaucher disease, 124 (±25.8) for Pompe disease, 83 (±44.3) for metachromatic leukodystrophy, 57 (±9.4) for Niemann-Pick type C, and 262 (±42.3) for adrenoleukodystrophy. In addition the birth prevalence was calculated using the estimated number of patients and birth year data for each disease, and was 1.25 for Fabry disease, 0.09 for mucopolysaccharidosis I, 0.38 for mucopolysaccharidosis II, 0.19 for Gaucher disease, 0.14 for Pompe disease, 0.16 for metachromatic leukodystrophy, 0.16 for Niemann-Pick type C, and 0.20 for adrenoleukodystrophy. DISCUSSION: Among the diseases analyzed, the disease with the highest prevalence was Fabry disease, followed by mucopolysaccharidosis II, adrenoleukodystrophy, Gaucher disease and metachromatic leukodystrophy. In particular, the high prevalence of mucopolysaccharidosis II and Gaucher disease type II was a feature characteristic of Japan. CONCLUSION: We estimated the number of patients with lysosomal storage disorders and peroxisomal disorders in Japan. The details of the age at diagnosis and treatment methods for each disease were clarified, and will be useful for the early diagnosis of these patients and to provide appropriate treatments. Furthermore, our results suggest that supportive care and the development of an environment that can provide optimal medical care is important in the future.


Assuntos
Monitoramento Epidemiológico , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/epidemiologia , Transtornos Peroxissômicos/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Terapia de Reposição de Enzimas , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Recém-Nascido , Japão/epidemiologia , Doenças por Armazenamento dos Lisossomos/classificação , Doenças por Armazenamento dos Lisossomos/terapia , Masculino , Pessoa de Meia-Idade , Triagem Neonatal , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/diagnóstico , Prevalência , Inquéritos e Questionários , Adulto Jovem
2.
Genet Med ; 20(10): 1274-1283, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29419819

RESUMO

PURPOSE: Peroxisome biogenesis disorders-Zellweger spectrum disorders (PBD-ZSD) are metabolic diseases with multisystem manifestations. Individuals with PBD-ZSD exhibit impaired peroxisomal biochemical functions and have abnormal levels of peroxisomal metabolites, but the broader metabolic impact of peroxisomal dysfunction and the utility of metabolomic methods is unknown. METHODS: We studied 19 individuals with clinically and molecularly characterized PBD-ZSD. We performed both quantitative peroxisomal biochemical diagnostic studies in parallel with untargeted small molecule metabolomic profiling in plasma samples with detection of >650 named compounds. RESULTS: The cohort represented intermediate to mild PBD-ZSD subjects with peroxisomal biochemical alterations on targeted analysis. Untargeted metabolomic profiling of these samples revealed elevations in pipecolic acid and long-chain lysophosphatidylcholines, as well as an unanticipated reduction in multiple sphingomyelin species. These sphingomyelin reductions observed were consistent across the PBD-ZSD samples and were rare in a population of >1,000 clinical samples. Interestingly, the pattern or "PBD-ZSD metabolome" was more pronounced in younger subjects suggesting studies earlier in life reveal larger biochemical changes. CONCLUSION: Untargeted metabolomics is effective in detecting mild to intermediate cases of PBD-ZSD. Surprisingly, dramatic reductions in plasma sphingomyelin are a consistent feature of the PBD-ZSD metabolome. The use of metabolomics in PBD-ZSD can provide insight into novel biomarkers of disease.


Assuntos
Biomarcadores/sangue , Doenças por Armazenamento dos Lisossomos/sangue , Transtornos Peroxissômicos/sangue , Síndrome de Zellweger/sangue , Adolescente , Adulto , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Proteínas de Membrana , Metabolômica/métodos , Transtornos Peroxissômicos/patologia , Esfingomielinas/sangue , Adulto Jovem , Síndrome de Zellweger/genética , Síndrome de Zellweger/patologia
3.
J Inherit Metab Dis ; 41(3): 489-498, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209936

RESUMO

Peroxisomes are ubiquitous cell organelles that play an important role in lipid metabolism. Accordingly, peroxisomal disorders, including the peroxisome biogenesis disorders and peroxisomal single-enzyme deficiencies, are associated with aberrant lipid metabolism. Lipidomics is an emerging tool for diagnosis, disease-monitoring, identifying lipid biomarkers, and studying the underlying pathophysiology in disorders of lipid metabolism. In this study, we demonstrate the potential of lipidomics for the diagnosis of peroxisomal disorders using plasma samples from patients with different types of peroxisomal disorders. We show that the changes in the plasma profiles of phospholipids, di- and triglycerides, and cholesterol esters correspond with the characteristic metabolite abnormalities that are currently used in the metabolic screening for peroxisomal disorders. The lipidomics approach, however, gives a much more detailed overview of the metabolic changes that occur in the lipidome. Furthermore, we identified novel unique lipid species for specific peroxisomal diseases that are candidate biomarkers. The results presented in this paper show the power of lipidomics approaches to enable the specific diagnosis of different peroxisomal disorders.


Assuntos
Lipídeos/sangue , Metabolômica/métodos , Transtornos Peroxissômicos/diagnóstico , Biomarcadores/análise , Biomarcadores/sangue , Análise Química do Sangue/métodos , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Transtornos Peroxissômicos/sangue , Peroxissomos/metabolismo
4.
Mol Genet Metab ; 121(3): 279-282, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28566232

RESUMO

Phytanic acid is a branched-chain fatty acid, the level of which is elevated in patients with a variety of peroxisomal disorders, including Refsum disease, and Rhizomelic chondrodysplasia punctata type 1 and 5. Elevated levels of both phytanic and pristanic acid are found in patients with Zellweger Spectrum Disorders, and pristanic acid is elevated in patients with α-methylacyl-CoA racemase deficiency. For the diagnosis of peroxisomal disorders, a variety of metabolites can be measured in blood samples from suspected patients, including very long-chain fatty acids, phytanic and pristanic acid. Based on the fact that very long-chain fatty acylcarnitines are elevated in tissues and plasma from patients with certain peroxisomal disorders, we investigated whether phytanoyl- and pristanoyl-carnitine are also present in plasma from patients with different peroxisomal disorders. Our study shows that phytanoyl- and pristanoyl-carnitine are indeed present in plasma samples from patients with different types of peroxisomal disorders, but only when the total plasma levels of their corresponding fatty acids, phytanic acid and pristanic acid, are markedly elevated. We conclude that the measurement of phytanoyl- and pristanoyl-carnitine is not sensitive and specific enough to use these acylcarnitines as conclusive diagnostic markers for peroxisomal disorders.


Assuntos
Carnitina/sangue , Diterpenos/sangue , Ácidos Graxos/sangue , Transtornos Peroxissômicos/diagnóstico , Carnitina/análogos & derivados , Células Cultivadas , Ácidos Graxos/química , Humanos , Oxirredução , Transtornos Peroxissômicos/sangue , Ácido Fitânico/sangue , Doença de Refsum/sangue
5.
J Inherit Metab Dis ; 39(4): 531-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26943801

RESUMO

Peroxisomes are dynamic organelles that play an essential role in a variety of metabolic pathways. Peroxisomal dysfunction can lead to various biochemical abnormalities and result in abnormal metabolite levels, such as increased very long-chain fatty acid or reduced plasmalogen levels. The metabolite abnormalities in peroxisomal disorders are used in the diagnostics of these disorders. In this paper we discuss in detail the different diagnostic tests available for peroxisomal disorders and focus specifically on the important role of biochemical and functional studies in cultured skin fibroblasts in reaching the right diagnosis. Several examples are shown to underline the power of such studies.


Assuntos
Biomarcadores/análise , Técnicas e Procedimentos Diagnósticos , Transtornos Peroxissômicos/diagnóstico , Biomarcadores/sangue , Biomarcadores/urina , Fibroblastos/patologia , Humanos , Programas de Rastreamento/métodos , Redes e Vias Metabólicas/fisiologia , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/metabolismo , Transtornos Peroxissômicos/urina , Cultura Primária de Células/métodos , Pele/patologia
6.
Neuropediatrics ; 47(4): 205-20, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27089543

RESUMO

Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders, X-linked adrenoleukodystrophy, and multiple single enzyme deficiencies. There are several core phenotypes caused by peroxisomal dysfunction that clinicians can recognize. The diagnosis is suggested by biochemical testing in blood and urine and confirmed by functional assays in cultured skin fibroblasts, followed by mutation analysis. This review describes the phenotype of the main peroxisomal disorders and possible pitfalls in (laboratory) diagnosis to aid clinicians in the recognition of this group of diseases.


Assuntos
Transtornos Peroxissômicos/diagnóstico , Adrenoleucodistrofia/sangue , Adrenoleucodistrofia/diagnóstico , Idade de Início , Biomarcadores/sangue , Condrodisplasia Punctata Rizomélica/sangue , Condrodisplasia Punctata Rizomélica/diagnóstico , Análise Mutacional de DNA , Genótipo , Humanos , Transtornos Peroxissômicos/sangue , Fenótipo , Racemases e Epimerases/deficiência , Doença de Refsum/sangue , Doença de Refsum/diagnóstico , Síndrome de Zellweger/sangue , Síndrome de Zellweger/diagnóstico
7.
Neuropediatrics ; 47(3): 179-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947510

RESUMO

Peroxisome biogenesis disorders (PBD) are a heterogeneous group of disorders due to PEX genes mutations, with a broad clinical spectrum comprising severe neonatal disease to mild presentation. Recently, Berendse et al reported an improvement of peroxisomal functions with l-arginine supplementation in fibroblasts with specific mutations of PEX1, PEX6, and PEX12. We report the first treatment by l-arginine in a patient homozygous for the specific PEX12 mutation shown to be l-arginine responsive in fibroblasts. We described the effect of l-arginine on biochemical (decrease of some plasma peroxisomal parameters) and neurophysiological (improvement of deafness) parameters. Some subjective clinical effects have also been observed (no more sialorrhea, behavior improvement). More studies are needed to assess the efficacy of l-arginine in some PBD patients with specific mutations.


Assuntos
Arginina/uso terapêutico , Proteínas de Membrana/genética , Transtornos Peroxissômicos/tratamento farmacológico , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Criança , Pré-Escolar , Surdez/etiologia , Deficiências do Desenvolvimento/etiologia , Ácidos Graxos/sangue , Feminino , Humanos , Lactente , Proteínas de Membrana/deficiência , Hipotonia Muscular/etiologia , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/complicações , Transtornos Peroxissômicos/genética , Ácido Fitânico/sangue , Ácidos Pipecólicos/sangue , Sialorreia/etiologia
8.
Mol Genet Metab ; 114(1): 46-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481105

RESUMO

BACKGROUND: Pre-symptomatic hematopoietic stem cell transplantation is essential to achieve best possible outcomes for patients with the childhood cerebral form of X-linked adrenoleukodystrophy (X-ALD). We describe a high-throughput method for measurement of C20-C26 lysophosphatidylcholines (LPCs) and biochemical diagnosis of X-ALD using the same dried blood spots (DBS) routinely used for newborn screening. METHODS: LPCs are extracted from 3-mm DBS punch with methanol containing an isotopically labeled LPC as internal standard. This extract is transferred to a 96-well plate, evaporated and then reconstituted in mobile phase for flow injection analysis tandem mass spectrometry (FIA-MS/MS) in selected reaction monitoring mode for measurement of four different LPCs (C20, C22, C24, C26) and the internal standard (d4-C26-LPC). Analysis time is 1.5min per sample. RESULTS: The mean CVs from the intra- and inter-assay experiments for LPCs were 6.3-15.1% for C20-LPC, 4.4-18.6% for C22-LPC and 4.5-14.3% for C24-LPC. Limits of detection were determined for C20-LPC (LOD=0.03µg/mL), C22-LPC (0.03µg/mL), C24-LPC (0.03µg/mL) and C26-LPC (0.01µg/mL). Reference ranges were established from DBS of 130 newborns and 20 adults. Samples of patients with X-ALD (n=16), peroxisomal biogenesis disorders (n=8), and X-ALD carriers (n=12) were analyzed blindly and all were correctly identified. CONCLUSION: Analysis of LPC species by FIA-MS/MS is a fast, simple and reliable method to screen for X-ALD and other peroxisomal disorders in DBS. To maximize specificity, abnormal results can be verified by a 2nd tier assay using LC-MS/MS.


Assuntos
Adrenoleucodistrofia/sangue , Teste em Amostras de Sangue Seco , Lisofosfatidilcolinas/sangue , Triagem Neonatal/métodos , Adulto , Cromatografia Líquida , Ensaios de Triagem em Larga Escala , Humanos , Recém-Nascido , Limite de Detecção , Transtornos Peroxissômicos/sangue , Valores de Referência , Espectrometria de Massas em Tandem/métodos
9.
Mol Genet Metab ; 107(3): 620-2, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22864056

RESUMO

Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs.


Assuntos
Arachis , Ácidos Graxos/sangue , Adulto , Idoso , Arachis/metabolismo , Ácidos Graxos/química , Feminino , Alimentos , Humanos , Pessoa de Meia-Idade , Peso Molecular , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/diagnóstico , Período Pós-Prandial , Estudos Prospectivos
10.
Clin Lab ; 57(7-8): 469-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21888010

RESUMO

BACKGROUND: The pathological mechanisms underlying peroxisomal biogenesis disorders (PBD) are not fully understood and the available therapies are not sufficient. This stresses the importance of identifying biochemical markers that reflect the extent of peroxisomal dysfunction in plasma of PBD patients. METHODS: Very long chain fatty acids VLCFAs, Phytanic acid, inflammatory markers: tumor necrosis-alpha, interleukin-6, and interleukin-2 (TNF-alpha, IL-6, and IL-2), lipid peroxidation parameter malonedialdhyde (MDA), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), and catalase activity were measured. RESULTS: Significant increases in LDL-C, VLCFAs (C26:0, C26:0/C22:0 and C24:0/C22:0), Phytanic acid, MDA, and Catalase were observed along with significant decreases in Plasmalogen and HDL-C level. No significant difference could be found between male and female patients regarding the biochemical parameters. Both cholesterol and triglycerides showed no significant difference between patients and controls. The characteristic curve (ROC) showed that VLCFAs were the most significant diagnostic markers for PBD followed by TNF-alpha, IL2, IL6, MDA, and plasmalogens. CONCLUSIONS: PBD patients have impaired anti-oxidative defense together with increased inflammatory markers. We provide biomarkers that could guide therapies and prevention strategies. Based on our results we suggest clinical trials to investigate the role of dietary supplementation of antioxidants such as vitamin C and E as an adjuvant therapy for PBD patients.


Assuntos
Biomarcadores/sangue , Ácidos Graxos/metabolismo , Transtornos Peroxissômicos/sangue , Catalase/sangue , Criança , Pré-Escolar , Citocinas/sangue , Feminino , Humanos , Lactente , Inflamação/sangue , Peroxidação de Lipídeos , Lipídeos/sangue , Masculino , Malondialdeído/sangue , Estresse Oxidativo , Fenótipo , Ácido Fitânico/sangue , Plasmalogênios/sangue , Curva ROC , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade , Fator de Necrose Tumoral alfa/sangue
11.
J Lipid Res ; 51(6): 1591-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20093478

RESUMO

The aim of the study was to develop a method for fast and reliable diagnosis of peroxisomal diseases and to facilitate differential diagnosis of cholestatic hepatopathy. For the quantification of bile acids and their conjugates as well as C(27) precursors di- and trihydroxycholestanoic acid (DHCA, THCA), in small pediatric blood samples we combined HPLC separation on a reverse-phase C18 column with ESI-MS/MS analysis in the negative ion mode. Analysis was done with good precision (CV 3,7%-11.1%) and sufficient sensitivity (LOQ: 11-91 nmol/L) without derivatization. Complete analysis of 17 free and conjugated bile acids from dried blood spots and 10 microL serum samples, respectively, was performed within 12 min. Measurement of conjugated primary bile acids plus DHCA and THCA as well as ursodeoxycholic acid was done in 4.5 min. In blood spots of healthy newborns, conjugated primary bile acids were found in the range of 0.01 to 2.01 micromol/L. Concentrations of C(27) precursors were below the detection limit in normal controls. DHCA and THCA were specifically elevated in cases of peroxysomal defects and one Zellweger patient.


Assuntos
Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/química , Análise Química do Sangue/métodos , Coleta de Amostras Sanguíneas , Carbono/química , Soro/química , Atresia Biliar/sangue , Cromatografia Líquida , Galactosemias/sangue , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Transtornos Peroxissômicos/sangue , Espectrometria de Massas em Tandem , Fatores de Tempo , Ácido Ursodesoxicólico/uso terapêutico
12.
Acta Paediatr ; 98(4): 640-2, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19290965

RESUMO

AIM: Plasmalogens are phospholipids characterized by the presence of a vinyl ether bond at the sn-1 position of the glycerol backbone. They are particularly abundant in the nervous system, the heart and striated muscle. Peroxisomes are essential for their biosynthesis and red blood cell (RBC) plasmalogen levels are a reliable test in the investigation of patients suspect for a peroxisomal defect. The functions attributed to them include protection against oxidative stress, myelin formation and signal transduction. The aim of the present study was the investigation of RBC plasmalogen levels in neonates. METHODS: A total of 25 healthy full-term, appropriate for gestational age neonates were studied. RBC plasmalogens were estimated using gas chromatography within the first five days of life. Fifteen healthy children 1-8-year olds served as controls. RESULTS: Statistically significant lower plasmalogen levels were found in neonates compared to older children. CONCLUSION: Our results indicate that a different range of normal values for plasmalogen levels should be used in the investigation of peroxisomal diseases in neonates. The lower levels of plasmalogens in neonates found in our study could render them more vulnerable to oxidative stress.


Assuntos
Plasmalogênios/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromatografia Gasosa , Membrana Eritrocítica/metabolismo , Humanos , Lactente , Recém-Nascido , Triagem Neonatal , Estresse Oxidativo , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/diagnóstico , Valores de Referência
13.
J Biochem ; 165(1): 67-73, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295825

RESUMO

We have established diagnostic thresholds of very long-chain fatty acids (VLCFA) for the differential diagnosis of peroxisomal disorders using the machine learning tools. The plasma samples of 131 controls and 90 cases were tested for VLCFA using gas chromatography-mass spectrometry following stable isotope dilution. These data were used to construct association rules and for recursive partitioning. The C26/22 in healthy controls ranged between 0.008 and 0.01. The C26 levels between 1.61 and 3.34 µmol/l and C26/C22 between 0.05 and 0.10 are diagnostic of X-linked adrenoleukodystrophy (X-ALD). Very high levels of C26 (>3.34 µmol/l) and C26/C22 ratio (>0.10) are diagnostic of Zellweger syndrome (ZS). Significant elevation of phytanic acid was observed in Refsum (t = 6.14, P < 0.0001) and Rhizomelic chondrodysplasia punctata (RCDP) (t = 16.72, P < 0.0001). The C26/C22 ratio is slightly elevated in RCDP (t = 2.58, P = 0.01) while no such elevation was observed in Refsum disease (t = 0.86, P = 0.39). The developed algorithm exhibited greater clinical utility (AUC: 0.99-1.00) in differentiating X-ALD, ZS and healthy controls. The algorithm has greater clinical utility in the differential diagnosis of peroxisomal disorders based on VLCFA pattern. Plasmalogens will add additional value in differentiating RCDP and Refsum disease.


Assuntos
Algoritmos , Aprendizado de Máquina , Transtornos Peroxissômicos/diagnóstico , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Diagnóstico Diferencial , Ácidos Graxos/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Lactente , Recém-Nascido , Masculino , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/genética , Fenótipo , Ácido Fitânico/sangue , Adulto Jovem
14.
J Inherit Metab Dis ; 31 Suppl 2: S453-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19089597

RESUMO

We report a 16-month-old asymptomatic male with enzyme confirmed isovaleric acidaemia (IVA; isovaleryl-CoA dehydrogenase deficiency; OMIM 243500) who, upon routine nutritional follow-up, presented evidence of peroxisomal dysfunction. The newborn screen (2 days of life) revealed elevated C(5)-carnitine (2.95 µmol/L; cutoff <0.09 µmol/L) and IVA was subsequently confirmed by metabolic profiling and in vitro enzymology. Plasma essential fatty acid (EFA) analysis, assessed to evaluate nutritional status during protein restriction and L: -carnitine supplementation, revealed elevated C(26:0) (5.0 µmol/L; normal <1.3). Subsequently, metabolic profiling and molecular genetic analysis confirmed X-linked adrenoleukodystrophy (XALD). Identification of co-inherited XALD with IVA in this currently asymptomatic patient holds significant treatment ramifications for the proband prior to the onset of neurological sequelae, and critically important counselling implications for this family.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Ácidos Graxos Essenciais/sangue , Avaliação Nutricional , Transtornos Peroxissômicos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/genética , Biomarcadores/sangue , Análise Mutacional de DNA , Humanos , Lactente , Recém-Nascido , Isovaleril-CoA Desidrogenase/sangue , Isovaleril-CoA Desidrogenase/deficiência , Isovaleril-CoA Desidrogenase/genética , Masculino , Triagem Neonatal , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/complicações , Transtornos Peroxissômicos/genética , Valor Preditivo dos Testes
15.
Pediatr Neurol ; 38(2): 137-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18206797

RESUMO

Neonatal seizures are critical conditions because they are usually related to significant illnesses that require a specific therapy. Antepartum and peripartum seizures are very rare, and represent signs of prenatal-onset neurologic dysfunction. A review of the literature revealed that the main etiologies include severe brain malformations, multiple anomalies, and metabolic encephalopathy. A high incidence of early fatality and serious neurologic sequelae were noted. To our knowledge, this is the first case report of neonatal adrenoleukodystrophy presenting with seizure at birth. These very-early-onset seizures may require unique diagnostic and therapeutic considerations, in contrast with the later onset of seizures in neonates.


Assuntos
Transtornos Peroxissômicos/fisiopatologia , Convulsões/fisiopatologia , Adulto , Encéfalo/patologia , Evolução Fatal , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/complicações , Gravidez , Convulsões/sangue , Convulsões/congênito
16.
J Neurol ; 263(8): 1552-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27230853

RESUMO

Peroxisomal biogenesis disorders (PBDs) consist of a heterogeneous group of autosomal recessive diseases, in which peroxisome assembly and proliferation are impaired leading to severe multisystem disease and early death. PBDs include Zellweger spectrum disorders (ZSDs) with a relatively mild clinical phenotype caused by PEX1, (MIM# 602136), PEX2 (MIM# 170993), PEX6 (MIM# 601498), PEX10 (MIM# 602859), PEX12 (MIM# 601758), and PEX16 (MIM# 603360) mutations. Three adult patients are reported belonging to a non-consanguineous French family affected with slowly progressive cerebellar ataxia, axonal neuropathy, and pyramidal signs. Mental retardation and diabetes mellitus were optional. The age at onset was in childhood or in adolescence (3-15 years). Brain MRI showed marked cerebellar atrophy. Biochemical blood analyses suggested a mild peroxisomal defect. With whole exome sequencing, two mutations in PEX10 were found in the three patients: c.827G>T (novel) causing the missense change p.Cys276Phe and c.932G>A causing the missense change p.Arg311Gln. The phenotypic spectrum related to PEX10 mutations includes slowly progressive, syndromic recessive ataxia.


Assuntos
Ataxia Cerebelar/genética , Mutação de Sentido Incorreto/genética , Transtornos Peroxissômicos/genética , Receptores Citoplasmáticos e Nucleares/genética , Encéfalo/diagnóstico por imagem , Análise Mutacional de DNA , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Peroxinas , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/diagnóstico por imagem
17.
Clin Chim Acta ; 440: 108-12, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25447702

RESUMO

Pipecolic acid (PA) is an important biochemical marker for the diagnosis of peroxisomal disorders. PA is also a factor responsible for hepatic encephalopathy and a possible biomarker for pyridoxine-dependent seizures. We developed an easy and rapid PA quantification method, by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), requiring no derivatization and applicable to small sample volumes. Plasma (100 µl) is extracted with 500 µl acetonitrile (ACN) containing 2 µmol/l [(2)H5]-phenylalanine as internal standard, vortexed and centrifuged. The supernatant is analyzed by HPLC-MS/MS in positive-ion mode using multiple reaction monitoring scan type. HPLC column is a Luna HILIC (150×3.0mm; 3 µ 200A): Buffer A: ammonium formate 5 mmol/l; Buffer B: ACN/H20 90:10 containing ammonium formate 5 mmol/l. PA retention time is 4.86 min. Recovery was 93.8%, linearity was assessed between 0.05 and 50 µmol/l (R(2)=0.998), lower limit of detection was 0.010 µmol/l and lower limit of quantification was 0.050 µmol/l. Coefficient of variation was 3.2% intra-assay and 3.4% inter-assay, respectively. Clinical validation was obtained by comparing PA plasma values from 5 patients affected by peroxisomal disorders (mean, 23.38 µmol/l; range, 11.20-37.1 µmol/l) to 24 ages related healthy subjects (mean, 1.711 µmol/l; range, 0.517-3.580 µmol/l).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Pipecólicos/sangue , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Biomarcadores/sangue , Calibragem , Criança , Pré-Escolar , Epilepsia/sangue , Epilepsia/diagnóstico , Feminino , Humanos , Lactente , Recém-Nascido , Ácidos Isonipecóticos/isolamento & purificação , Limite de Detecção , Masculino , Ácidos Nipecóticos/isolamento & purificação , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/diagnóstico , Ácidos Pipecólicos/isolamento & purificação , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-14630371

RESUMO

High pressure liquid chromatography with a narrow bore C8 column has been used to separate pristanic, phytanic and very long chain fatty acids, important in the diagnosis of peroxisomal disorders, for their accurate isotope dilution quantification by tandem mass spectrometry. The fatty acids, isolated from plasma, were analysed as trimethylaminoethyl ester (quaternary ammonium) derivatives. Analysis time was 2.5 h and sample requirement was 10 microl of plasma. Good agreement with GC-MS methods for the levels of pristanic and phytanic acids, C26:0/C22:0 and C24:0/C22:0 ratios were obtained for 12 plasma samples from peroxisomal disorder patients and a set of controls.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos/sangue , Transtornos Peroxissômicos/diagnóstico , Ácido Fitânico/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Lactente , Transtornos Peroxissômicos/sangue
19.
Brain Dev ; 25(7): 481-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13129591

RESUMO

Very long chain fatty acids (VLCFAs) and docosahexaenoic acid (DHA), phytanic acid, and plasmalogens are usually measured individually. A novel method for the screening of peroxisomal disorders, using gas chromatography/mass spectrometry (GC/MS), was developed. Saturated and unsaturated fatty acids, including VLCFAs and DHA, phytanic acid, and plasmalogen were detected by a selected ion monitoring-electron impact method, using 100 microl of serum or plasma. Methyl-esterification and extraction could be done in one tube, and data were obtained within 4 h. All patients with Zellweger syndrome (ZS), X-linked adrenoleukodystrophy (ALD), isolated deficiency of peroxisomal beta-oxidation enzyme, and most ALD carriers showed increased VLCFA ratios, including C24:0/C22:0, C25:0/C22:0 and C26:0/C22:0. The ratio of DHA to palmitic acid (C16:0) and plasmalogen (measured as hexadecanal dimethyl acetal) to C16:0 in ZS patients was significantly lower than for the controls (P<0.001 for healthy high school students, P<0.05 for infants with other disorders). Plasmalogen was also decreased in patients with isolated deficiency of plasmalogen biosynthesis. Two of eight patients with ZS, two of four with RCDP, and all of three classical Refsum patients showed increased levels of phytanic acid. This method will simplify the screening for peroxisomal disorders.


Assuntos
Ácidos Graxos/sangue , Cromatografia Gasosa-Espectrometria de Massas , Transtornos Peroxissômicos/sangue , Transtornos Peroxissômicos/diagnóstico , Adolescente , Adrenoleucodistrofia/diagnóstico , Estudos de Casos e Controles , Ácidos Docosa-Hexaenoicos/sangue , Humanos , Lactente , Ácido Fitânico/sangue , Plasmalogênios/sangue , Doença de Refsum/diagnóstico , Síndrome de Zellweger/diagnóstico
20.
Rev Neurol ; 28 Suppl 1: S40-4, 1999 Jan.
Artigo em Espanhol | MEDLINE | ID: mdl-10778487

RESUMO

INTRODUCTION: Peroxisomal disorders are divided into two groups: a) Those with alterations in multiple peroxisomal functions, and b) With alterations in only one peroxisomal function. DEVELOPMENT: During the period 1987-1997, using very long chain fatty acids, plasmalogens and phytanic acid as diagnostic parameters, we diagnosed 116 cases of peroxisomal disorders in Spain. The most frequent (76%) was found to be X-linked adrenoleukodystrophy (X-ALD). Of the five phenotypes described in this condition, the adult cerebral form is seen in a higher percentage in the Spanish population (14%) than in other populations studied (1-3%). Defects in the assembly of peroxisomes made up 18%; the commonest phenotype was that of Zellweger's syndrome (13 cases), followed by neonatal adrenoleukodystrophy (5 cases) and infantile Refsum (2 cases). In the latter two patients, study of the hepatic peroxisomes showed a mosaic distribution. Rhizomelic punctate chondroplasia made up 3%, isolated beta-oxidation defects 2% and defects of plasmalogen synthesis 1%. In X-ALD, diagnosis of an initial case led to the detection of 12 presymptomatic and 70 heterozygote persons. Prenatal diagnoses were made on 10 occasions and 7 fetuses found to be affected. The introduction of the study of ALDP expression in the fibroblasts and the profile of the organic acids in the urine has led to improved diagnosis of these disorders.


Assuntos
Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/epidemiologia , Adulto , Pré-Escolar , Humanos , Incidência , Lactente , Transtornos Peroxissômicos/sangue , Fenótipo , Estudos Retrospectivos , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA