Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(1): F143-F151, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942538

RESUMO

There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.


Assuntos
Acidose , Túbulos Renais Coletores , Camundongos , Animais , Suínos , Trimetoprima/farmacologia , Trimetoprima/metabolismo , Túbulos Renais Coletores/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Antibacterianos/farmacologia , Acidose/metabolismo
2.
BMC Microbiol ; 24(1): 52, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331716

RESUMO

Resistance mechanisms are a shelter for Acinetobacter baumannii to adapt to our environment which causes difficulty for the infections to be treated and WHO declares this organism on the top of pathogens priority for new drug development. The most common mechanism that develops drug resistance is the overexpression of the efflux pump, especially Resistance-nodulation-cell division (RND) family, to almost most antibiotics. The study is designed to detect RND efflux pump genes in A. baumannii, and its correlation to multidrug resistance, in particular, the carbapenems resistance Acinetobacter baumannii (CRAB), and using different inhibitors that restore the antibiotic susceptibility of imipenem. Clinical A. baumannii isolates were recovered from different Egyptian hospitals in Intensive care unit (ICU). The expression of genes in two strains was analyzed using RT-PCR before and after inhibitor treatment. About 100 clinical A. baumannii isolates were recovered and identified and recorded as MDR strains with 75% strains resistant to imipenem. adeB, adeC, adeK, and adeJ were detected in thirty- seven the carbapenems resistance Acinetobacter baumannii (CRAB) strains. Cinnamomum verum oil, Trimethoprim, and Omeprazole was promising inhibitor against 90% of the carbapenems resistance Acinetobacter baumannii (CRAB) strains with a 2-6-fold decrease in imipenem MIC. Downregulation of four genes was associated with the addition of those inhibitors to imipenem for two the carbapenems resistance Acinetobacter baumannii (CRAB) (ACN15 and ACN99) strains, and the effect was confirmed in 24 h killing kinetics. Our investigation points to the carbapenems resistance Acinetobacter baumannii (CRAB) strain's prevalence in Egyptian hospitals with the idea to revive the imipenem activity using natural and chemical drugs as inhibitors that possessed high synergistic activity.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Trimetoprima/metabolismo , Trimetoprima/farmacologia , Trimetoprima/uso terapêutico , Cinnamomum zeylanicum/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/uso terapêutico , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
3.
PLoS Comput Biol ; 18(2): e1009855, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143481

RESUMO

Antimicrobial resistance presents a significant health care crisis. The mutation F98Y in Staphylococcus aureus dihydrofolate reductase (SaDHFR) confers resistance to the clinically important antifolate trimethoprim (TMP). Propargyl-linked antifolates (PLAs), next generation DHFR inhibitors, are much more resilient than TMP against this F98Y variant, yet this F98Y substitution still reduces efficacy of these agents. Surprisingly, differences in the enantiomeric configuration at the stereogenic center of PLAs influence the isomeric state of the NADPH cofactor. To understand the molecular basis of F98Y-mediated resistance and how PLAs' inhibition drives NADPH isomeric states, we used protein design algorithms in the osprey protein design software suite to analyze a comprehensive suite of structural, biophysical, biochemical, and computational data. Here, we present a model showing how F98Y SaDHFR exploits a different anomeric configuration of NADPH to evade certain PLAs' inhibition, while other PLAs remain unaffected by this resistance mechanism.


Assuntos
Antagonistas do Ácido Fólico , Infecções Estafilocócicas , Farmacorresistência Bacteriana/genética , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , NADP/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/química , Trimetoprima/metabolismo , Trimetoprima/farmacologia
4.
J Chem Inf Model ; 63(15): 4839-4849, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37491825

RESUMO

Dihydrofolate reductase (DHFR) is an important drug target and a highly studied model protein for understanding enzyme dynamics. DHFR's crucial role in folate synthesis renders it an ideal candidate to understand protein function and protein evolution mechanisms. In this study, to understand how a newly proposed DHFR inhibitor, 4'-deoxy methyl trimethoprim (4'-DTMP), alters evolutionary trajectories, we studied interactions that lead to its superior performance over that of trimethoprim (TMP). To elucidate the inhibition mechanism of 4'-DTMP, we first confirmed, both computationally and experimentally, that the relative binding free energy cost for the mutation of TMP and 4'-DTMP is the same, pointing the origin of the characteristic differences to be kinetic rather than thermodynamic. We then employed an interaction-based analysis by focusing first on the active site and then on the whole enzyme. We confirmed that the polar modification in 4'-DTMP induces additional local interactions with the enzyme, particularly, the M20 loop. These changes are propagated to the whole enzyme as shifts in the hydrogen bond networks. To shed light on the allosteric interactions, we support our analysis with network-based community analysis and show that segmentation of the loop domain of inhibitor-bound DHFR must be avoided by a successful inhibitor.


Assuntos
Escherichia coli , Antagonistas do Ácido Fólico , Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Timidina Monofosfato , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Trimetoprima/farmacologia , Trimetoprima/química , Trimetoprima/metabolismo
5.
Anal Bioanal Chem ; 414(9): 3121-3135, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35141763

RESUMO

Antibiotics are some of the most widely used drugs. Their release in the environment is of great concern since their consumption is a major factor for antibiotic resistance, one of the most important threats to human health. Their occurrence and fate in agricultural systems have been extensively investigated in recent years. Yet whilst their biotic and abiotic degradation pathways have been thoroughly researched, their biotransformation pathways in plants are less understood, such as in case of trimethoprim. Although trimethoprim has been reported in the environment, its fate in higher plants still remains unknown. A bench-scale experiment was performed and 30 trimethoprim metabolites were identified in lettuce (Lactuca sativa L.), of which 5 belong to phase I and 25 to phase II. Data mining yielded a list of 1018 ions as possible metabolite candidates, which was filtered to a final list of 87 candidates. Molecular structures were assigned for 19 compounds, including 14 TMP metabolites reported for the first time. Alongside well-known biotransformation pathways in plants, additional novel pathways were suggested, namely, conjugation with sesquiterpene lactones, and abscisic acid as a part of phase II of plant metabolism. The results obtained offer insight into the variety of phase II conjugates and may serve as a guideline for studying the metabolization of other chemicals that share a similar molecular structure or functional groups with trimethoprim. Finally, the toxicity and potential contribution of the identified metabolites to the selective pressure on antibiotic resistance genes and bacterial communities via residual antimicrobial activity were evaluated.


Assuntos
Lactuca , Trimetoprima , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Biotransformação , Humanos , Lactuca/química , Compostos Fitoquímicos/metabolismo , Trimetoprima/metabolismo , Trimetoprima/farmacologia
6.
Environ Res ; 214(Pt 2): 113916, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35872321

RESUMO

The presence of emerging pollutants, and specifically antibiotics, in agricultural soils has increased notably in recent decades, causing growing concern as regards potential environmental and health issues. With this in mind, the current study focuses on evaluating the toxicity exerted by three antibiotics (amoxicillin, trimethoprim, and ciprofloxacin) on the growth of soil bacterial communities, when these pollutants are present at different doses, and considered in the short, medium, and long terms (1, 8 and 42 days of incubation). Specifically, the research was carried out in 12 agricultural soils having different physicochemical characteristics and was performed by means of the leucine (3H) incorporation method. In addition, changes in the structure of soil microbial communities at 8 and 42 days were studied in four of these soils, using the phospholipids of fatty acids method for this. The main results indicate that the most toxic antibiotic was amoxicillin, followed by trimethoprim and ciprofloxacin. The results also show that the toxicity of amoxicillin decreases with time, with values of Log IC50 ranging from 0.07 ± 0.05 to 3.43 ± 0.08 for day 1, from 0.95 ± 0.07 to 3.97 ± 0.15 for day 8, and from 2.05 ± 0.03 to 3.18 ± 0.04 for day 42, during the incubation period. Regarding trimethoprim, 3 different behaviors were observed: for some soils the growth of soil bacterial communities was not affected, for a second group of soils trimethoprim toxicity showed dose-response effects that remained persistent over time, and, finally, for a third group of soils the toxicity of trimethoprim increased over time, being greater for longer incubation times (42 days). As regards ciprofloxacin, this antibiotic did not show a toxicity effect on the growth of soil bacterial communities for any of the soils or incubation times studied. Furthermore, the principal component analysis performed with the phospholipids of fatty acids results demonstrated that the microbial community structure of these agricultural soils, which persisted after 42 days of incubation, depended mainly on soil characteristics and, to a lesser extent, on the dose and type of antibiotic (amoxicillin, trimethoprim or ciprofloxacin). In addition, it was found that, in this research, the application of the three antibiotics to soils usually favored the presence of fungi and Gram-positive bacteria.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Amoxicilina/análise , Amoxicilina/metabolismo , Amoxicilina/toxicidade , Antibacterianos/toxicidade , Bactérias , Ciprofloxacina/metabolismo , Ciprofloxacina/toxicidade , Poluentes Ambientais/análise , Ácidos Graxos/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Trimetoprima/análise , Trimetoprima/metabolismo , Trimetoprima/toxicidade
7.
J Comput Chem ; 41(5): 421-426, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479166

RESUMO

Promoting drug delivery across the biological membrane is a common strategy to improve bioavailability. Inspired by the observation that carbonated alcoholic beverages can increase the absorption rate of ethanol, we speculate that carbon dioxide (CO2 ) molecules could also enhance membrane permeability to drugs. In the present work, we have investigated the effect of CO2 on the permeability of a model membrane formed by 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids to three drug-like molecules, namely, ethanol, 2',3'-dideoxyadenosine, and trimethoprim. The free-energy and fractional-diffusivity profiles underlying membrane translocation were obtained from µs-timescale simulations and combined in the framework of the fractional solubility-diffusion model. We find that addition of CO2 in the lipid environment results in an increase of the membrane permeability to the three substrates. Further analysis of the permeation events reveals that CO2 expands and loosens the membrane, which, in turn, facilitates permeation of the drug-like molecules. © 2019 Wiley Periodicals, Inc.


Assuntos
Dióxido de Carbono/metabolismo , Membrana Celular/metabolismo , Dióxido de Carbono/química , Membrana Celular/química , Didesoxiadenosina/química , Didesoxiadenosina/metabolismo , Etanol/química , Etanol/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Trimetoprima/química , Trimetoprima/metabolismo
8.
Nat Chem Biol ; 13(4): 369-371, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218913

RESUMO

Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems.


Assuntos
Ligantes , Chaperonas Moleculares/farmacologia , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/metabolismo , 1-Desoxinojirimicina/farmacologia , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Reprodutibilidade dos Testes , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/metabolismo , Trimetoprima/farmacologia , alfa-Galactosidase/química , alfa-Galactosidase/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(11): E1470-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929328

RESUMO

Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/genética , Trimetoprima/farmacologia , Sequência de Aminoácidos , Biofísica/métodos , Chlamydia muridarum/genética , Evolução Molecular Direcionada , Estabilidade Enzimática/genética , Epistasia Genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração Inibidora 50 , Listeria/genética , Dados de Sequência Molecular , Mutação , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/metabolismo
10.
Angew Chem Int Ed Engl ; 58(19): 6285-6289, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30834641

RESUMO

Several genome engineering applications of CRISPR-Cas9, an RNA-guided DNA endonuclease, require precision control of Cas9 activity over dosage, timing, and targeted site in an organism. While some control of Cas9 activity over dose and time have been achieved using small molecules, and spatial control using light, no singular system with control over all the three attributes exists. Furthermore, the reported small-molecule systems lack wide dynamic range, have background activity in the absence of the small-molecule controller, and are not biologically inert, while the optogenetic systems require prolonged exposure to high-intensity light. We previously reported a small-molecule-controlled Cas9 system with some dosage and temporal control. By photocaging this Cas9 activator to render it biologically inert and photoactivatable, and employing next-generation protein engineering approaches, we have built a system with a wide dynamic range, low background, and fast photoactivation using a low-intensity light while rendering the small-molecule activator biologically inert. We anticipate these precision controls will propel the development of practical applications of Cas9.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Engenharia de Proteínas , Estrutura Terciária de Proteína , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Ativação Transcricional/efeitos dos fármacos , Trimetoprima/química , Trimetoprima/metabolismo , Trimetoprima/farmacologia , Raios Ultravioleta
11.
Angew Chem Int Ed Engl ; 57(37): 11993-11997, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30048030

RESUMO

The spatiotemporal dynamics of proteins or organelles plays a vital role in controlling diverse cellular processes. However, acute control of activity at distinct locations within a cell is challenging. A versatile multidirectional activity control (MAC) approach is presented, which employs a photoactivatable system that may be dimerized upon chemical inducement. The system comprises second-generation SLF*-TMP (S*T) and photocaged NvocTMP-Cl dimerizers; where, SLF*-TMP features a synthetic ligand of the FKBP(F36V) binding protein, Nvoc is a caging group, and TMP is the antibiotic trimethoprim. Two MAC strategies are demonstrated to spatiotemporally control cellular signaling and intracellular cargo transport. The novel platform enables tunable, reversible, and rapid control of activity at multiple compartments in living cells.


Assuntos
Optogenética/métodos , Proteínas de Ligação a Tacrolimo/química , Trimetoprima/química , Dimerização , Células HeLa , Humanos , Ligantes , Luz , Microscopia Confocal , Peroxissomos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Trimetoprima/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Phys Chem Chem Phys ; 19(18): 11416-11428, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28422217

RESUMO

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme with an essential role in cell metabolism. DHFR catalyzes the reduction of dihydrofolate to tetrahydrofolate, which is a precursor for purine and thymidylate synthesis. Several DHFR targeting antifolate drugs including trimethoprim, a competitive antibacterial inhibitor, have therefore been developed and are clinically used. Evolution of resistance against antifolates is a common public health problem rendering these drugs ineffective. To combat the resistance problem, it is important to understand resistance-conferring changes in the DHFR structure and accordingly develop alternative strategies. Here, we structurally and dynamically characterize Escherichia coli DHFR in its wild type (WT) and trimethoprim resistant L28R mutant forms in the presence of the substrate and its inhibitor trimethoprim. We use molecular dynamics simulations to determine the conformational space, loop dynamics and hydrogen bond distributions at the active site of DHFR for the WT and the L28R mutant. We also report their experimental kcat, Km, and Ki values, accompanied by isothermal titration calorimetry measurements of DHFR that distinguish enthalpic and entropic contributions to trimethoprim binding. Although mutations that confer resistance to competitive inhibitors typically make enzymes more promiscuous and decrease affinity to both the substrate and the inhibitor, strikingly, we find that the L28R mutant has a unique resistance mechanism. While the binding affinity differences between the WT and the mutant for the inhibitor and the substrate are small, the newly formed extra hydrogen bonds with the aminobenzoyl glutamate tail of DHF in the L28R mutant leads to increased barriers for the dissociation of the substrate and the product. Therefore, the L28R mutant indirectly gains resistance by enjoying prolonged binding times in the enzyme-substrate complex. While this also leads to slower product release and decreases the catalytic rate of the L28R mutant, the overall effect is the maintenance of a sufficient product formation rate. Finally, the experimental and computational analyses together reveal the changes that occur in the energetic landscape of DHFR upon the resistance-conferring L28R mutation. We show that the negative entropy associated with the binding of trimethoprim in WT DHFR is due to water organization at the binding interface. Our study lays the framework to study structural changes in other trimethoprim resistant DHFR mutants.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Antagonistas do Ácido Fólico/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/metabolismo , Domínio Catalítico/genética , Farmacorresistência Bacteriana/genética , Antagonistas do Ácido Fólico/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação Puntual , Ligação Proteica , Conformação Proteica , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Trimetoprima/química
13.
Water Sci Technol ; 2017(1): 144-155, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29698230

RESUMO

A pilot scale biological nutrient removal (BNR) process, batch experiments and modeling exercises were employed to investigate the removal and biotransformation of trimethoprim (TMP) in a BNR activated sludge process. The concentrations of the active microbial groups - ammonia oxidizing bacteria (AOB), ordinary heterotrophic organisms (OHOs) and polyphosphate accumulating organisms (PAOs) - in the BNR bioreactor were quantified through modeling of the pilot bioreactor. The overall TMP removal efficiency for the pilot BNR process was 64 ± 14% while the TMP biotransformation efficiencies in the anaerobic, anoxic and aerobic zones were 22 ± 20%, 27 ± 8% and 36 ± 5% respectively. Batch tests with and without nitrification inhibition showed that AOB played a role in the biotransformation of TMP in BNR activated sludge. A pseudo first order model which incorporated the contributions of PAOs, OHOs and AOB to the overall biodegradation of TMP was found to describe the biodegradation of TMP in batch tests with and without nitrification inhibition. This model showed that PAOs, OHOs and AOB contributed towards the biotransformation of TMP in aerobic BNR activated sludge with the biotransformation rate constants following the trend of kAOB > kOHOs > kPAOs.


Assuntos
Reatores Biológicos , Trimetoprima/química , Eliminação de Resíduos Líquidos , Anti-Infecciosos Urinários/química , Anti-Infecciosos Urinários/metabolismo , Biodegradação Ambiental , Biotransformação , Nitrogênio/metabolismo , Polifosfatos/metabolismo , Esgotos/microbiologia , Trimetoprima/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
14.
Biochemistry ; 55(7): 1107-19, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26848874

RESUMO

Mycobacterium tuberculosis (Mtb) Rv2671 is annotated as a 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate (AROPP) reductase (RibD) in the riboflavin biosynthetic pathway. Recently, a strain of Mtb with a mutation in the 5' untranslated region of Rv2671, which resulted in its overexpression, was found to be resistant to dihydrofolate reductase (DHFR) inhibitors including the anti-Mtb drug para-aminosalicylic acid (PAS). In this study, a biochemical analysis of Rv2671 showed that it was able to catalyze the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), which explained why the overexpression of Rv2671 was sufficient to confer PAS resistance. We solved the structure of Rv2671 in complex with the NADP(+) and tetrahydrofolate (THF), which revealed the structural basis for the DHFR activity. The structures of Rv2671 complexed with two DHFR inhibitors, trimethoprim and trimetrexate, provided additional details of the substrate binding pocket and elucidated the differences between their inhibitory activities. Finally, Rv2671 was unable to catalyze the reduction of AROPP, which indicated that Rv2671 and its closely related orthologues are not involved in riboflavin biosynthesis.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , NADP/química , Nucleotídeo Desaminases/química , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolatos/química , Ácido Aminossalicílico/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Farmacorresistência Bacteriana , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Cinética , Ligantes , Conformação Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , NADP/metabolismo , Nucleotídeo Desaminases/antagonistas & inibidores , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolatos/metabolismo , Trimetoprima/química , Trimetoprima/metabolismo , Trimetoprima/farmacologia , Trimetrexato/química , Trimetrexato/metabolismo , Trimetrexato/farmacologia
15.
J Am Chem Soc ; 138(16): 5258-61, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27071001

RESUMO

We demonstrate how a combination of self-labeling protein tags and unnatural amino acid technology permits the semisynthesis of ratiometric fluorescent sensor proteins with unprecedented dynamic range in vitro and on live cells. To generate such a sensor, a binding protein is labeled with a fluorescent competitor of the analyte using SNAP-tag in conjugation with a second fluorophore that is positioned in vicinity of the binding site of the binding protein using unnatural amino acid technology. Binding of the analyte by the sensor displaces the tethered fluorescent competitor from the binding protein and disrupts fluorescence resonance energy transfer between the two fluorophores. Using this design principle, we generate a ratiometric fluorescent sensor protein for methotrexate that exhibits large dynamic ranges both in vitro (ratio changes up to 32) and on cell surfaces (ratio change of 13). The performance of these semisynthetic sensor proteins makes them attractive for applications in basic research and diagnostics.


Assuntos
Corantes Fluorescentes/química , Metotrexato/análise , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/síntese química , Tetra-Hidrofolato Desidrogenase/química , Carbocianinas/química , Membrana Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/metabolismo
16.
J Vet Pharmacol Ther ; 39(3): 309-14, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26669806

RESUMO

A pharmacokinetic and tissue residue study of sulfadiazine combined with trimethoprim (SDZ/TMP = 5/1) was conducted in Siniperca chuatsi after single- (120 mg/kg) or multiple-dose (an initial dose of 120 mg/kg followed by a 5-day consecutive dose of 60 mg/kg) oral administrations at 28 °C. The absorption half-life (t1/2α ), elimination half-life (t1/2ß ), volume of distribution (Vd /F), and the total body clearance (ClB /F) for SDZ and TMP were 4.3 ± 1.7 to 6.3 ± 1.8 h and 2.4 ± 1.0 to 3.9 ± 0.9 h, 25.9 ± 4.5 to 53.0 ± 5.6 h and 11.8 ± 3.5 to 17.1 ± 3.4 h, 2.34 ± 0.78 to 3.67 ± 0.99 L/kg and 0.39 ± 0.01 to 1.33 ± 0.57 L/kg, and 0.03 ± 0.01 to 0.06 ± 0.01 L/kg·h and 0.02 ± 0.01 to 0.05 ± 0.01 L/kg·h, respectively, after the single dose. The elimination half-life (t1/2ß ) and mean residue time (MRT) for SDZ and TMP were 68.8 ± 7.8 to 139.8 ± 12.3 h and 34.0 ± 5.5 to 56.1 ± 6.8 h, and 99.3 ± 6.1 to 201.7 ± 11.5 h and 49.1 ± 3.5 to 81.0 ± 5.1 h, respectively, after the multiple-dose administration. The daily oral SDZ/TMP administration might cause a high tissue concentration and long t1/2ß , thereby affecting antibacterial activity. The withdrawal time for this oral SDZ/TMP formulation (according to the accepted guidelines in Europe for maximum residue limits, <0.1 mg/kg of tissues for sulfonamides, and <0.05 mg/kg for TMP) should not be <36 days for fish.


Assuntos
Antibacterianos/farmacocinética , Peixes/metabolismo , Sulfadiazina/farmacocinética , Trimetoprima/farmacocinética , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Área Sob a Curva , Esquema de Medicação , Combinação de Medicamentos , Resíduos de Drogas , Peixes/sangue , Meia-Vida , Sulfadiazina/administração & dosagem , Sulfadiazina/metabolismo , Trimetoprima/administração & dosagem , Trimetoprima/metabolismo
17.
J Bacteriol ; 197(21): 3456-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283771

RESUMO

UNLABELLED: Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. One of the orphans, MalR, is genetically linked to the mal gene cluster, which encodes enzymes required for production of the cytotoxic polyketide malleilactone. Under normal laboratory conditions the mal gene cluster is silent; however, antibiotics like trimethoprim induce mal transcription. We show that trimethoprim-dependent induction of the mal genes requires MalR. MalR has all of the conserved amino acid residues characteristic of AHL-responsive LuxR homologs, but in B. thailandensis, MalR activation of malleilactone synthesis genes is not responsive to AHLs. MalR can activate transcription from the mal promoter in E. coli without addition of AHLs or trimethoprim. Expression of malR in B. thailandensis is induced by trimethoprim. Our data indicate that MalR binds to a lux box-like element in the mal promoter and activates transcription of the mal genes in an AHL-independent manner. Antibiotics like trimethoprim appear to activate mal gene expression indirectly by somehow activating malR expression. MalR activation of the mal genes represents an example of a LuxR homolog that is not a receptor for an AHL quorum-sensing signal. Our evidence is consistent with the idea that mal gene activation depends solely on sufficient transcription of the malR gene. IMPORTANCE: LuxR proteins are transcription factors that are typically activated by acyl-homoserine lactone (AHL) signals. We demonstrate that a conserved LuxR family protein, MalR, activates genes independently of AHLs. MalR is required for transcription of genes coding for synthesis of the cytotoxic polyketide malleilactone. These genes are not expressed when cells are grown under normal laboratory conditions. In laboratory culture, MalR induction of malleilactone requires certain antibiotics, such as trimethoprim, which increase malR expression by an unknown mechanism. At sufficient levels of malR expression, MalR functions independently of any external signal. Our findings show that MalR is an activator of the silent malleilactone biosynthesis genes and that MalR functions independently of AHLs.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Lactonas/metabolismo , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Burkholderia/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Trimetoprima/metabolismo
18.
Chembiochem ; 16(5): 834-43, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25688755

RESUMO

We report the evaluation of two alternative chemical dimerizer approaches aimed at increasing the sensitivity of MASPIT, a three-hybrid system that enables small-molecule target protein profiling in intact human cells. To circumvent the potential limitations related to the binding of methotrexate (MTX) to endogenous human dihydrofolate reductase (DHFR), we explored trimethoprim (TMP) as an alternative prokaryote-specific DHFR ligand. MASPIT evaluation of TMP fusion compounds with tamoxifen, reversine, and simvastatin as model baits, resulted in dose-response curves shifted towards lower EC50 values than those of their MTX congeners. Furthermore, a scalable azido-TMP reagent was synthesized that displayed a similar improvement in sensitivity, possibly owing to increased membrane permeability relative to the MTX anchor. Applying the SNAP-tag approach to introduce a covalent bond into the system, on the other hand, produced an inferior readout than in the MTX- or TMP-tag based assay.


Assuntos
Indicadores e Reagentes/metabolismo , Metotrexato/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/química , Trimetoprima/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Indicadores e Reagentes/síntese química , Indicadores e Reagentes/química , Ligantes , Metotrexato/química , Estrutura Molecular , Tetra-Hidrofolato Desidrogenase/química , Trimetoprima/síntese química
19.
ACS Chem Biol ; 18(4): 711-723, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36215670

RESUMO

Opportunistic infections by Burkholderia cenocepacia are life threatening for patients suffering from cystic fibrosis and chronic granulomatous disease. These infections are often associated with variable clinical outcomes, prompting an interest in molecular investigations of phenotypes associated with disease severity. The production of the pyomelanin pigment is one such phenotype, which was recently linked to the ability of clinical strains to carry out biotransformation of the antibiotic trimethoprim. However, this biotransformation product was not identified, and differences in metabolite production associated with pyomelanin pigmentation are poorly understood. Here, we identify several key metabolites produced exclusively by the pyomelanin-producing strains. To provide insight into the structures and biosynthetic origin of these metabolites, we developed a mass spectrometry-based strategy coupling unsupervised in silico substructure prediction with stable isotope labeling referred to as MAS-SILAC (Metabolite Annotation assisted by Substructure discovery and Stable Isotope Labeling by Amino acids in Cell culture). This approach led to discovery of homogentisic acid as a precursor for biosynthesis of several natural products and for biotransformation of trimethoprim, representing a previously unknown mechanism of antibiotic tolerance. This work presents application of computational methods for analysis of untargeted metabolomic data to link the chemotype of pathogenic microorganisms with a specific phenotype. The observations made in this study provide insights into the clinical significance of the melanated phenotype.


Assuntos
Produtos Biológicos , Trimetoprima , Antibacterianos , Produtos Biológicos/metabolismo , Ácido Homogentísico/metabolismo , Metabolômica , Trimetoprima/química , Trimetoprima/metabolismo
20.
J Antimicrob Chemother ; 67(12): 2854-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22915457

RESUMO

OBJECTIVES: Direct SOS-dependent regulation of qnrB genes by fluoroquinolones mediated by LexA was reported. The smaqnr gene, on the Serratia marcescens chromosome, and qnrD both contain a putative LexA box. The aim of this study was to evaluate whether smaqnr or qnrD genes are induced via SOS-dependent mechanisms, and to investigate whether other antimicrobial agents induce qnrB, qnrD and smaqnr expression. METHODS: RT-PCR was used to evaluate qnrB1, qnrD and smaqnr expression. Different concentrations of ciprofloxacin, levofloxacin, moxifloxacin and ceftazidime were evaluated as inducers. Additionally, the promoter regions of qnrB1, qnrD and smaqnr were fused transcriptionally to green fluorescent protein and used in reporter gene assays. Disc diffusion assays with different antimicrobial agents were used to detect induction. Measurements of transcriptional induction by ciprofloxacin were carried out using a plate reader. RESULTS: RT-PCR assays showed that qnrB1, qnrD and smaqnr were induced at different concentrations of ciprofloxacin, moxifloxacin, levofloxacin and ceftazidime, increasing transcription 1.5- to 16.3-fold compared with basal expression, and depending on the antimicrobial agent and promoter analysed. The reporter gene assays showed that the qnrB1, qnrD and smaqnr genes were induced by ciprofloxacin, as expected, but also by ceftazidime, ampicillin and trimethoprim in Escherichia coli wild-type strains, but not in the recA-deficient E. coli HB101. Induction was not evident for imipenem or gentamicin. CONCLUSIONS: ß-Lactams and trimethoprim, along with fluoroquinolones, induce transcription of qnrB, qnrD and smaqnr genes using SOS-dependent regulation. These results show the direct SOS-dependent regulation of a low-level fluoroquinolone resistance mechanism in response to other antimicrobials.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/biossíntese , Fluoroquinolonas/metabolismo , Regulação Bacteriana da Expressão Gênica , Resposta SOS em Genética , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Fusão Gênica Artificial , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Trimetoprima/metabolismo , beta-Lactamas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA