Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7899): 174-179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35173332

RESUMO

Lassa virus (LASV) is a human pathogen, causing substantial morbidity and mortality1,2. Similar to other Arenaviridae, it presents a class-I spike complex on its surface that facilitates cell entry. The virus's cellular receptor is matriglycan, a linear carbohydrate that is present on α-dystroglycan3,4, but the molecular mechanism that LASV uses to recognize this glycan is unknown. In addition, LASV and other arenaviruses have a unique signal peptide that forms an integral and functionally important part of the mature spike5-8; yet the structure, function and topology of the signal peptide in the membrane remain uncertain9-11. Here we solve the structure of a complete native LASV spike complex, finding that the signal peptide crosses the membrane once and that its amino terminus is located in the extracellular region. Together with a double-sided domain-switching mechanism, the signal peptide helps to stabilize the spike complex in its native conformation. This structure reveals that the LASV spike complex is preloaded with matriglycan, suggesting the mechanism of binding and rationalizing receptor recognition by α-dystroglycan-tropic arenaviruses. This discovery further informs us about the mechanism of viral egress and may facilitate the rational design of novel therapeutics that exploit this binding site.


Assuntos
Distroglicanas , Vírus Lassa , Receptores Virais , Proteínas do Envelope Viral , Distroglicanas/química , Distroglicanas/metabolismo , Humanos , Febre Lassa/virologia , Vírus Lassa/química , Vírus Lassa/metabolismo , Conformação Proteica , Sinais Direcionadores de Proteínas , Receptores Virais/química , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
2.
J Virol ; 98(10): e0079924, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39264155

RESUMO

Mammarenaviruses include several highly virulent pathogens (e.g., Lassa virus) capable of causing severe hemorrhagic fever diseases for which there are no approved vaccines and limited treatment options. Mammarenaviruses are enveloped, bi-segmented ambisense RNA viruses. There is limited knowledge about cellular proteins incorporated into progeny virion particles and their potential biological roles in viral infection. Pichinde virus (PICV) is a prototypic arenavirus used to characterize mammarenavirus replication and pathogenesis. We have developed a recombinant PICV with a tri-segmented RNA genome as a viral vector platform. Whether the tri-segmented virion differs from the wild-type bi-segmented one in viral particle morphology and protein composition has not been addressed. In this study, recombinant PICV (rPICV) virions with a bi-segmented (rP18bi) and a tri-segmented (rP18tri) genome were purified by density-gradient ultracentrifugation and analyzed by cryo-electron microscopy and mass spectrometry. Both virion types are pleomorphic with spherical morphology and have no significant difference in size despite rP18tri having denser particles. Both virion types also contain similar sets of cellular proteins. Among the highly enriched virion-associated cellular proteins are components of the endosomal sorting complex required for transport pathway and vesicle trafficking, such as ALIX, Tsg101, VPS, CHMP, and Ras-associated binding proteins, which have known functions in virus assembly and budding. Other enriched cellular proteins include peripheral and transmembrane proteins, chaperone proteins, and ribosomal proteins; their biological roles in viral infection warrant further analysis. Our study provides important insights into mammarenavirus particle formation and aids in the future development of viral vectors and antiviral discovery.IMPORTANCEMammarenaviruses, such as Lassa virus, are enveloped RNA viruses that can cause severe hemorrhagic fever diseases (Lassa fever) with no approved vaccine and limited therapeutic options. Cellular proteins incorporated into progeny virion particles and their biological roles in mammarenavirus infection have not been well characterized. Pichinde virus (PICV) is a prototypic mammarenavirus used as a surrogate model for Lassa fever. We used cryo-electron microscopy and proteomic analysis to characterize the morphology and protein contents of the purified PICV particles that package either two (bi-segmented) or three (tri-segmented) genomic RNA segments. Our results demonstrate a similar virion morphology but different particle density for the bi- and tri-segmented viral particles and reveal major virion-associated cellular proteins. This study provides important insights into the virus-host interactions that can be used for antiviral development and optimizing arenavirus-based vaccine vectors.


Assuntos
Microscopia Crioeletrônica , Genoma Viral , Vírus Pichinde , Vírion , Vírion/metabolismo , Vírion/ultraestrutura , Vírus Pichinde/genética , Vírus Pichinde/metabolismo , Animais , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Humanos , Chlorocebus aethiops , Montagem de Vírus , Células Vero , Vírus Lassa/genética , Vírus Lassa/metabolismo
3.
Curr Top Microbiol Immunol ; 440: 147-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37100973

RESUMO

Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic fever that is endemic in West Africa. LASV virions are enveloped and contain two single-stranded RNA genome segments. Both segments are ambisense and encode two proteins. The nucleoprotein associates with viral RNAs forming ribonucleoprotein complexes. The glycoprotein complex mediates viral attachment and entry. The Zinc protein serves as the matrix protein. Large is a polymerase that catalyzes viral RNA transcription and replication. LASV virion entry occurs via a clathrin-independent endocytic pathway usually involving alpha-dystroglycan and lysosomal associated membrane protein 1 as surface and intracellular receptors, respectively. Advances in understanding LASV structural biology and replication have facilitated development of promising vaccine and drug candidates.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Febre Lassa/prevenção & controle , Biologia , África Ocidental
4.
J Am Chem Soc ; 145(51): 27958-27974, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38104324

RESUMO

Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.


Assuntos
Vírus Lassa , Ribonucleoproteínas , Vírus Lassa/genética , Vírus Lassa/metabolismo , Ribonucleoproteínas/química , Nucleoproteínas , Montagem de Vírus , RNA Viral/genética , RNA Viral/metabolismo
5.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051278

RESUMO

The arenaviruses Lassa virus (LASV), Junín virus (JUNV), and Machupo virus (MACV) can cause severe and fatal diseases in humans. Although these pathogens are closely related, the host immune responses to these virus infections differ remarkably, with direct implications for viral pathogenesis. LASV infection is immunosuppressive, with a very low-level interferon response. In contrast, JUNV and MACV infections stimulate a robust interferon (IFN) response in a retinoic acid-inducible gene I (RIG-I)-dependent manner and readily activate protein kinase R (PKR), a known host double-stranded RNA (dsRNA) sensor. In response to infection with RNA viruses, host nonself RNA sensors recognize virus-derived dsRNA as danger signals and initiate innate immune responses. Arenavirus nucleoproteins (NPs) contain a highly conserved exoribonuclease (ExoN) motif, through which LASV NP has been shown to degrade virus-derived immunostimulatory dsRNA in biochemical assays. In this study, we for the first time present evidence that LASV restricts dsRNA accumulation during infection. Although JUNV and MACV NPs also have the ExoN motif, dsRNA readily accumulated in infected cells and often colocalized with dsRNA sensors. Moreover, LASV coinfection diminished the accumulation of dsRNA and the IFN response in JUNV-infected cells. The disruption of LASV NP ExoN with a mutation led to dsRNA accumulation and impaired LASV replication in minigenome systems. Importantly, both LASV NP and RNA polymerase L protein were required to diminish the accumulation of dsRNA and the IFN response in JUNV infection. For the first time, we discovered a collaboration between LASV NP ExoN and L protein in limiting dsRNA accumulation. Our new findings provide mechanistic insights into the differential host innate immune responses to highly pathogenic arenavirus infections.IMPORTANCE Arenavirus NPs contain a highly conserved DEDDh ExoN motif, through which LASV NP degrades virus-derived, immunostimulatory dsRNA in biochemical assays to eliminate the danger signal and inhibit the innate immune response. Nevertheless, the function of NP ExoN in arenavirus infection remains to be defined. In this study, we discovered that LASV potently restricts dsRNA accumulation during infection and minigenome replication. In contrast, although the NPs of JUNV and MACV also harbor the ExoN motif, dsRNA readily formed during JUNV and MACV infections, accompanied by IFN and PKR responses. Interestingly, LASV NP alone was not sufficient to limit dsRNA accumulation. Instead, both LASV NP and L protein were required to restrict immunostimulatory dsRNA accumulation. Our findings provide novel and important insights into the mechanism for the distinct innate immune response to these highly pathogenic arenaviruses and open new directions for future studies.


Assuntos
Arenavirus do Novo Mundo/imunologia , Vírus Junin/imunologia , Vírus Lassa/imunologia , Infecções por Arenaviridae/virologia , Arenavirus/genética , Arenavirus/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Febre Lassa/imunologia , Vírus Lassa/metabolismo , Nucleoproteínas/metabolismo , RNA de Cadeia Dupla/imunologia , Replicação Viral , eIF-2 Quinase/metabolismo
6.
Biotechnol Bioeng ; 118(3): 1405-1410, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241859

RESUMO

Lack of experimental human models hinders research on Lassa hemorrhagic fever and the development of treatment strategies. Here, we report the first chip-based model for Lassa hemorrhagic syndrome. The chip features a microvessel interfacing collagen network as a simple mimic for extracellular matrix, allowing for quantitative and real-time vascular integrity assessment. Luminal infusion of Lassa virus-like particles led to a dramatic increase in vascular permeability in a viral load-dependent manner. Using this platform, we showed that Fibrin-derived peptide FX06 can be used to suppress the vascular integrity loss. This simple chip-based model proved promising in the assessment of disease severity and provides an easy-to-use platform for future investigation of Lassa pathogenesis and drug development in a human-like setting.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Febre Lassa/metabolismo , Vírus Lassa/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Choque Hemorrágico/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Febre Lassa/patologia , Choque Hemorrágico/patologia , Choque Hemorrágico/virologia , Síndrome
7.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511384

RESUMO

Lassa virus (LASV) is the causative agent of a fatal hemorrhagic fever in humans. The glycoprotein (GP) of LASV mediates viral entry into host cells, and correct processing and modification of GP by host factors is a prerequisite for virus replication. Here, using an affinity purification-coupled mass spectrometry (AP-MS) strategy, 591 host proteins were identified as interactors of LASV GP. Gene ontology analysis was performed to functionally annotate these proteins, and the oligosaccharyltransferase (OST) complex was highly enriched. Functional studies conducted by using CRISPR-Cas9-mediated knockouts showed that STT3A and STT3B, the two catalytically active isoforms of the OST complex, are essential for the propagation of the recombinant arenavirus rLCMV/LASV glycoprotein precursor, mainly via affecting virus infectivity. Knockout of STT3B, but not STT3A, caused hypoglycosylation of LASV GP, indicating a preferential requirement of LASV for the STT3B-OST isoform. Furthermore, double knockout of magnesium transporter 1 (MAGT1) and tumor suppressor candidate 3 (TUSC3), two specific subunits of STT3B-OST, also caused hypoglycosylation of LASV GP and affected virus propagation. Site-directed mutagenesis analysis revealed that the oxidoreductase CXXC active-site motif of MAGT1 or TUSC3 is essential for the glycosylation of LASV GP. NGI-1, a small-molecule OST inhibitor, can effectively reduce virus infectivity without affecting cell viability. The STT3B-dependent N-glycosylation of GP is conserved among other arenaviruses, including both the Old World and New World groups. Our study provided a systematic view of LASV GP-host interactions and revealed the preferential requirement of STT3B for LASV GP N-glycosylation.IMPORTANCE Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future.


Assuntos
Glicoproteínas/metabolismo , Hexosiltransferases/metabolismo , Febre Lassa/metabolismo , Vírus Lassa/metabolismo , Proteínas de Membrana/metabolismo , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions , Linhagem Celular , Técnicas de Inativação de Genes , Glicosilação , Células HEK293 , Células HeLa , Hexosiltransferases/genética , Humanos , Vírus Lassa/genética , Vírus Lassa/patogenicidade , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso , Oxirredutases/metabolismo , Isoformas de Proteínas , Receptores de Superfície Celular , Proteínas Supressoras de Tumor/genética , Internalização do Vírus
8.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30700611

RESUMO

Antiviral therapies that impede virus entry are attractive because they act on the first phase of the infectious cycle. Drugs that target pathways common to multiple viruses are particularly desirable when laboratory-based viral identification may be challenging, e.g., in an outbreak setting. We are interested in identifying drugs that block both Ebola virus (EBOV) and Lassa virus (LASV), two unrelated but highly pathogenic hemorrhagic fever viruses that have caused outbreaks in similar regions in Africa and share features of virus entry: use of cell surface attachment factors, macropinocytosis, endosomal receptors, and low pH to trigger fusion in late endosomes. Toward this goal, we directly compared the potency of eight drugs known to block EBOV entry with their potency as inhibitors of LASV entry. Five drugs (amodiaquine, apilimod, arbidol, niclosamide, and zoniporide) showed roughly equivalent degrees of inhibition of LASV and EBOV glycoprotein (GP)-bearing pseudoviruses; three (clomiphene, sertraline, and toremifene) were more potent against EBOV. We then focused on arbidol, which is licensed abroad as an anti-influenza drug and exhibits activity against a diverse array of clinically relevant viruses. We found that arbidol inhibits infection by authentic LASV, inhibits LASV GP-mediated cell-cell fusion and virus-cell fusion, and, reminiscent of its activity on influenza virus hemagglutinin, stabilizes LASV GP to low-pH exposure. Our findings suggest that arbidol inhibits LASV fusion, which may partly involve blocking conformational changes in LASV GP. We discuss our findings in terms of the potential to develop a drug cocktail that could inhibit both LASV and EBOV.IMPORTANCE Lassa and Ebola viruses continue to cause severe outbreaks in humans, yet there are only limited therapeutic options to treat the deadly hemorrhagic fever diseases they cause. Because of overlapping geographic occurrences and similarities in mode of entry into cells, we seek a practical drug or drug cocktail that could be used to treat infections by both viruses. Toward this goal, we directly compared eight drugs, approved or in clinical testing, for the ability to block entry mediated by the glycoproteins of both viruses. We identified five drugs with approximately equal potencies against both. Among these, we investigated the modes of action of arbidol, a drug licensed abroad to treat influenza infections. We found, as shown for influenza virus, that arbidol blocks fusion mediated by the Lassa virus glycoprotein. Our findings encourage the development of a combination of approved drugs to treat both Lassa and Ebola virus diseases.


Assuntos
Antivirais/farmacologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/tratamento farmacológico , Indóis/farmacologia , Febre Lassa/tratamento farmacológico , Vírus Lassa/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/patologia , Humanos , Febre Lassa/metabolismo , Febre Lassa/patologia , Células Vero , Internalização do Vírus/efeitos dos fármacos
9.
PLoS Pathog ; 13(4): e1006337, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28448640

RESUMO

Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.


Assuntos
Infecções por Arenaviridae/virologia , Arenavirus do Velho Mundo/metabolismo , Febre Lassa/virologia , Vírus Lassa/metabolismo , Proteínas de Membrana Lisossomal/química , Sequência de Aminoácidos , Animais , Arenavirus do Velho Mundo/química , Arenavirus do Velho Mundo/genética , Sítios de Ligação , Humanos , Vírus Lassa/química , Vírus Lassa/genética , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Fusão de Membrana , Modelos Moleculares , Modelos Estruturais , Ligação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Especificidade da Espécie
10.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28679759

RESUMO

Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions.IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March. Currently, there is neither a preventative vaccine nor a therapeutic available to effectively treat severe Lassa fever. One way to thwart virus infection is to inhibit interaction with cellular receptors. It is known that the GP1 subunit of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our results highlight a region within the Lassa virus GP1 protein that interacts with the cellular receptor alpha-dystroglycan. This information may be used for future development of new Lassa virus antivirals.


Assuntos
Distroglicanas/metabolismo , Vírus Lassa/genética , Vírus Lassa/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução Genética , Vesiculovirus/genética , Vesiculovirus/fisiologia , Internalização do Vírus
11.
PLoS Pathog ; 12(2): e1005418, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26849049

RESUMO

Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.


Assuntos
Glicoproteínas/metabolismo , Vírus Lassa/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Sinais Direcionadores de Proteínas , Proteínas do Envelope Viral/metabolismo , Animais , Chlorocebus aethiops , Glicoproteínas/química , Concentração de Íons de Hidrogênio , Vírus Lassa/química , Vírus Lassa/ultraestrutura , Proteínas de Membrana Lisossomal/química , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos , Ligação Proteica , Estrutura Terciária de Proteína , Células Vero , Proteínas do Envelope Viral/química , Vírion , Internalização do Vírus
12.
J Virol ; 90(22): 10329-10338, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27605678

RESUMO

To effectively infect cells, Lassa virus needs to switch in an endosomal compartment from its primary receptor, α-dystroglycan, to a protein termed LAMP1. A unique histidine triad on the surface of the receptor-binding domain from the glycoprotein spike complex of Lassa virus is important for LAMP1 binding. Here we investigate mutated spikes that have an impaired ability to interact with LAMP1 and show that although LAMP1 is important for efficient infectivity, it is not required for spike-mediated membrane fusion per se Our studies reveal important regulatory roles for histidines from the triad in sensing acidic pH and preventing premature spike triggering. We further show that LAMP1 requires a positively charged His230 residue to engage with the spike complex and that LAMP1 binding promotes membrane fusion. These results elucidate the molecular role of LAMP1 binding during Lassa virus cell entry and provide new insights into how pH is sensed by the spike. IMPORTANCE: Lassa virus is a devastating disease-causing agent in West Africa, with a significant yearly death toll and severe long-term complications associated with its infection in survivors. In recent years, we learned that Lassa virus needs to switch receptors in a pH-dependent manner to efficiently infect cells, but neither the molecular mechanisms that allow switching nor the actual effects of switching were known. Here we investigate the activity of the viral spike complex after abrogation of its ability to switch receptors. These studies inform us about the role of switching receptors and provide new insights into how the spike senses acidic pH.


Assuntos
Febre Lassa/metabolismo , Febre Lassa/virologia , Vírus Lassa/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Ligação Proteica/fisiologia , África Ocidental , Animais , Linhagem Celular , Chlorocebus aethiops , Distroglicanas/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Fusão de Membrana/fisiologia , Receptores Virais/metabolismo , Células Vero , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
13.
Biophys J ; 110(6): 1246-54, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028635

RESUMO

Lassa virus protects its viral genome through the formation of a ribonucleoprotein complex in which the nucleoprotein (NP) encapsidates the single-stranded RNA genome. Crystal structures provide evidence that a conformational change must occur to allow for RNA binding. In this study, the mechanism by which NP binds to RNA and how the conformational changes in NP are achieved was investigated with molecular-dynamics simulations. NP was structurally characterized in an open configuration when bound to RNA and in a closed form in the absence of RNA. Our results show that when NP is bound to RNA, the protein is highly dynamic and the system undergoes spontaneous deviations away from the open-state configuration. The equilibrium simulations are supported by free-energy calculations that quantify the influence of RNA on the free-energy surface, which governs NP dynamics. We predict that the globally stable states are qualitatively in agreement with the observed crystal structures, but that both open and closed conformations are thermally accessible in the presence of RNA. The free-energy calculations also provide a prediction of the location of the transition state for RNA binding and identify an intermediate metastable state that exhibits correlated motions that could promote RNA binding.


Assuntos
Vírus Lassa/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , RNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Domínios Proteicos , Propriedades de Superfície , Termodinâmica
14.
J Virol ; 89(15): 7584-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972533

RESUMO

UNLABELLED: Lassa virus is a notorious human pathogen that infects many thousands of people each year in West Africa, causing severe viral hemorrhagic fevers and significant mortality. The surface glycoprotein of Lassa virus mediates receptor recognition through its GP1 subunit. Here we report the crystal structure of GP1 from Lassa virus, which is the first representative GP1 structure for Old World arenaviruses. We identify a unique triad of histidines that forms a binding site for LAMP1, a known lysosomal protein recently discovered to be a critical receptor for internalized Lassa virus at acidic pH. We demonstrate that mutation of this histidine triad, which is highly conserved among Old World arenaviruses, impairs LAMP1 recognition. Our biochemical and structural data further suggest that GP1 from Lassa virus may undergo irreversible conformational changes that could serve as an immunological decoy mechanism. Together with a variable region that we identify on the surface of GP1, those could be two distinct mechanisms that Lassa virus utilizes to avoid antibody-based immune response. IMPORTANCE: Structural data at atomic resolution for viral proteins is key for understanding their function at the molecular level and can facilitate novel avenues for combating viral infections. Here we used X-ray protein crystallography to decipher the crystal structure of the receptor-binding domain (GP1) from Lassa virus. This is a pathogenic virus that causes significant illness and mortality in West Africa. This structure reveals the overall architecture of GP1 domains from the group of viruses known as the Old World arenaviruses. Using this structural information, we elucidated the mechanisms for pH switch and binding of Lassa virus to LAMP1, a recently identified host receptor that is critical for successful infection. Lastly, our structural analysis suggests two novel immune evasion mechanisms that Lassa virus may utilize to escape antibody-based immune response.


Assuntos
Febre Lassa/metabolismo , Vírus Lassa/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Febre Lassa/genética , Febre Lassa/virologia , Vírus Lassa/química , Vírus Lassa/genética , Proteínas de Membrana Lisossomal/química , Proteínas de Membrana Lisossomal/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
15.
Cell Microbiol ; 15(5): 689-700, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23279385

RESUMO

The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.


Assuntos
Distroglicanas/metabolismo , Matriz Extracelular/virologia , Febre Lassa/genética , Vírus Lassa/patogenicidade , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/virologia , Matriz Extracelular/metabolismo , Humanos , Febre Lassa/virologia , Vírus Lassa/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Tirosina/genética , Tirosina/metabolismo , Utrofina/genética , Utrofina/metabolismo
16.
Nat Commun ; 15(1): 8479, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353909

RESUMO

The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.


Assuntos
Endossomos , Canais de Cátion TRPM , Internalização do Vírus , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Endossomos/metabolismo , Endossomos/virologia , Concentração de Íons de Hidrogênio , Humanos , Animais , Células HEK293 , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ebolavirus/fisiologia , Ebolavirus/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Chlorocebus aethiops , Envelope Viral/metabolismo , Vírus Lassa/metabolismo , Vírus Lassa/fisiologia
17.
J Virol ; 86(8): 4578-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345463

RESUMO

Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a significant public health concern in regions where they are endemic. On the other hand, evidence indicates that the globally distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway participates in many cellular processes, including cell survival and differentiation, and also has been shown to play important roles in different steps of the life cycles of a variety of viruses. Here we report that the inhibition of the PI3K/Akt pathway inhibited budding and to a lesser extent RNA synthesis, but not cell entry, of LCMV. Accordingly, BEZ-235, a PI3K inhibitor currently in cancer clinical trials, inhibited LCMV multiplication in cultured cells. These findings, together with those previously reported for Junin virus (JUNV), indicate that targeting the PI3K/Akt pathway could represent a novel antiviral strategy to combat human-pathogenic arenaviruses.


Assuntos
Arenavirus/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Liberação de Vírus , Animais , Arenavirus/efeitos dos fármacos , Arenavirus/genética , Linhagem Celular , Chlorocebus aethiops , Cromonas/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Vírus Lassa/efeitos dos fármacos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinolinas/farmacologia , RNA Viral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Internalização do Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Arch Virol ; 158(9): 1895-905, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23553456

RESUMO

The Lassa virus nucleoprotein (NP) is a multifunctional protein that plays an essential role in many aspects of the viral life cycle, including RNA encapsidation, viral transcription and replication, recruitment of ribonucleoprotein complexes to viral budding sites, and inhibition of the host cell interferon response. While it is known that NP is capable of forming oligomers, both the oligomeric state of NP in mammalian cells and the significance of NP oligomerization for its various functions remain unclear. Here, we demonstrate that Lassa virus NP solely forms trimers upon expression in mammalian cells. Using a minigenome assay we show that mutants that are not able to form stable trimers are no longer functional during transcription and/or replication of the minigenome, indicating that NP trimerization is essential for transcription and/or replication of the viral genome. However, mutations leading to destabilization of the NP trimer did not impact the incorporation of NP into virus-like particles or its ability to suppress interferon-induced gene expression, two important functions of arenavirus NP.


Assuntos
Arenavirus/metabolismo , Nucleoproteínas/metabolismo , Sequência de Aminoácidos , Arenavirus/genética , Linhagem Celular Tumoral , Células HEK293 , Humanos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Dados de Sequência Molecular , Nucleoproteínas/química , Nucleoproteínas/genética , Multimerização Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
19.
J Biol Chem ; 286(44): 38748-38756, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21917929

RESUMO

The nucleoprotein (NP) of Lassa virus (LASV) strain AV was expressed in a recombinant baculovirus system. The crystal structure of full-length NP was solved at a resolution of 2.45 Å. The overall fold corresponds to that of NP of LASV strain Josiah (Qi, X., Lan, S., Wang, W., Schelde, L. M., Dong, H., Wallat, G. D., Ly, H., Liang, Y., and Dong, C. (2010) Nature 468, 779-783) with a root mean square deviation of 0.67 Å for all atoms (6.3% difference in primary sequence). As the packing in the crystal offers two different trimer architectures for the biological assembly, the quaternary structure of NP in solution was determined by small-angle x-ray scattering and EM. After classification and averaging of >6000 EM raw images, trimeric centrosymmetric structures were obtained, which correspond in size and shape to one trimer in the crystal structure formed around a crystallographic 3-fold rotation axis (symmetric trimer). The symmetric trimer is also a good model for the small-angle x-ray scattering data and could be well embedded into the ab initio model. The N-terminal domain of NP contains a deep nucleotide-binding cavity that has been proposed to bind cellular cap structures for priming viral mRNA synthesis. All residues implicated in m(7)GpppN binding were exchanged, and the transcription/replication phenotype of the NP mutant was tested using a LASV replicon system. None of the mutants showed a specific defect in mRNA expression; most were globally defective in RNA synthesis. In conclusion, we describe the full-length crystal structure and the quaternary structure in solution of LASV NP. The nucleotide-binding pocket of NP could not be assigned a specific role in viral mRNA synthesis.


Assuntos
Vírus Lassa/química , Vírus Lassa/genética , Microscopia Eletrônica/métodos , Mutação , Nucleoproteínas/química , Nucleoproteínas/genética , Cristalografia por Raios X/métodos , Vírus Lassa/metabolismo , Conformação Molecular , Mutagênese , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Vírus de RNA/química , Espalhamento de Radiação , Transcrição Gênica , Raios X
20.
J Virol ; 85(1): 324-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980514

RESUMO

The 200-kDa L protein of arenaviruses plays a central role in viral genome replication and transcription. This study aimed at providing evidence for the domain structure of L protein by combining bioinformatics with a stepwise mutagenesis approach using the Lassa virus minireplicon system. Potential interdomain linkers were predicted using various algorithms. The prediction was challenged by insertion of flexible sequences into the predicted linkers. Insertion of 5 or 10 amino acid residues was tolerated at seven sites (S407, G446, G467, G774, G939, S1952, and V2074 in Lassa virus AV). At two of these sites, G467 and G939, L protein could be split into an N-terminal and a C-terminal part, which were able to trans-complement each other and reconstitute a functional complex upon coexpression. Coimmunoprecipitation studies revealed physical interaction between the N- and C-terminal domains, irrespective of whether L protein was split at G467 or G939. In confocal immunofluorescence microscopy, the N-terminal domains showed a dot-like, sometimes perinuclear, cytoplasmic distribution similar to that of full-length L protein, while the C-terminal domains were homogenously distributed in cytoplasm. The latter were redistributed into the dot-like structures upon coexpression with the corresponding N-terminal domain. In conclusion, this study demonstrates two interdomain linkers in Lassa virus L protein, at G467 and G939, suggesting that L protein is composed of at least three structural domains spanning residues 1 to 467, 467 to 939, and 939 to 2220. The first domain seems to mediate accumulation of L protein into cytoplasmic dot-like structures.


Assuntos
Vírus Lassa/química , Proteínas Virais/química , Algoritmos , Animais , Linhagem Celular , Biologia Computacional , Cricetinae , Imunofluorescência , Imunoprecipitação , Vírus Lassa/genética , Vírus Lassa/metabolismo , Microscopia Confocal , Mutagênese , Estrutura Terciária de Proteína/genética , Replicon , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA