RESUMO
Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a ß-sandwich fold and utilizes its ß-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions.
Assuntos
Quimiocina CX3CL1/química , Receptores do Fator de Necrose Tumoral/química , Vírus da Varíola/química , Proteínas Virais/química , Substituição de Aminoácidos , Animais , Linhagem Celular , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Relação Estrutura-Atividade , Vírus da Varíola/genética , Vírus da Varíola/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Molluscum contagiosum virus (MCV) commonly causes asymptomatic cutaneous neoplasms in children and sexually active adults as well as persistent opportunistic acquired immunodeficiency syndrome (AIDS)-associated disease. Sequencing the 190-kilobase pair genome of MCV has now revealed that the virus potentially encodes 163 proteins, of which 103 have homologs in the smallpox virus. MCV lacks counterparts to 83 genes of the smallpox virus, including those important in suppression of host responses to infection, nucleotide biosynthesis, and cell proliferation. MCV possesses 59 genes that are predicted to encode previously uncharacterized proteins, including major histocompatibility complex class I, chemokine, and glutathione peroxidase homologs, which suggests that there are MCV-specific strategies for coexistence with the human host.
Assuntos
Genoma Viral , Vírus do Molusco Contagioso/genética , Proteínas Virais/química , Sequência de Aminoácidos , Composição de Bases , Quimiocinas/química , Quimiocinas/genética , DNA Viral/genética , Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Dados de Sequência Molecular , Vírus do Molusco Contagioso/química , Vírus do Molusco Contagioso/patogenicidade , Fases de Leitura Aberta , Orthopoxvirus/química , Orthopoxvirus/genética , Alinhamento de Sequência , Vírus da Varíola/química , Vírus da Varíola/genética , Proteínas Virais/genéticaRESUMO
In this study, five phage display antibodies (pdAbs) against ectromelia virus (ECTV) were selected from vaccinia virus (VACV)-immune phage-display library of human single chain variable fragments (scFv). ELISA demonstrated that selected pdAbs could recognize ECTV, VACV, and cowpox virus (CPXV). Atomic force microscopy visualized binding of the pdAbs to VACV. Three of the selected pdAbs neutralized variola virus (VARV) in the plaque reduction neutralization test. Western blot analysis of ECTV, VARV, VACV, and CPXV proteins indicated that neutralizing pdAbs bound orthopoxvirus 35â¯kDa proteins, which are encoded by the open reading frames orthologous to the ORF H3L in VACV. The fully human antibody fh1A was constructed on the base of the VH and VL domains of pdAb, which demonstrated a dose-dependent inhibition of plaque formation after infection with VARV, VACV, and CPXV. To determine the p35 region responsible for binding to neutralizing pdAbs, a panel of truncated p35 proteins was designed and expressed in Escherichia coli cells, and a minimal p35 fragment recognized by selected neutralizing pdAbs was identified. In addition, peptide phage-display combinatorial libraries were applied to localize the epitope. The obtained data indicated that the epitope responsible for recognition by the neutralizing pdAbs is discontinuous and amino acid residues located within two p35 regions, 15-19 aa and 232-237 aa, are involved in binding with neutralizing anti-p35 antibodies.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Ectromelia/imunologia , Vírus da Varíola/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Vírus da Ectromelia/genética , Mapeamento de Epitopos , Humanos , Testes de Neutralização , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Varíola/imunologia , Varíola/virologia , Vírus da Varíola/química , Vírus da Varíola/genética , Vírus da Varíola/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genéticaRESUMO
Open reading frame (orf) 129L of ectromelia (EV) and orf A30L of smallpox viruses (SPV) encoding fusion proteins were cloned and expressed in E. coli cells. The recombinant polypeptides (prA30L H pr129L) were purified from cell lysates by Ni-NTA chromatography. Recombinant polypeptides were able to form trimers in buffered saline and they destroyed under treatment with SDS and 2-mercaptoethanol. Reactivity of prA30L, pr129L and orthopoxvirus proteins was analyzed by ELISA and Western blotting with panel of 22 monoclonal antibodies (MAbs) against orthopoxviruses (19 against EV, 2 MAbs against vaccinia virus and 1 Mabs against cowpox virus). This data allowed us to conclude that there are 12 EV-specific epitopes of pr129L and EV fusion proteins, ten orthopox-specific epitopes of EV, VV, CPV fusion proteins, from them 9 orthopox-specific epitopes of prA30L and SPV fusion proteins. Five Mabs, which cross-reacted with orthopox-specific epitopes, were able to neutralize the VV on Vero cells and from them two MAbs has neutralizing activity against smallpox virus. Our findings demonstrate that 129L fusion protein have EV-specific epitopes, that EV 129L and SPV A30L fusion proteins have a several orthopox-specific epitopes to induce a neutralizing antibodies against human pathogenic orthopoxviruses.
Assuntos
Anticorpos Monoclonais/química , Vírus da Ectromelia/química , Epitopos/química , Proteínas Recombinantes de Fusão/química , Vírus da Varíola/química , Proteínas Virais/química , Animais , Anticorpos Monoclonais/imunologia , Vírus da Ectromelia/genética , Vírus da Ectromelia/imunologia , Epitopos/genética , Epitopos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Especificidade da Espécie , Vírus da Varíola/genética , Vírus da Varíola/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologiaRESUMO
Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK.
Assuntos
Aciclovir/análogos & derivados , Antivirais/química , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Vírus da Varíola/química , Proteínas Virais/antagonistas & inibidores , Domínio Catalítico , Cidofovir , Citosina/análogos & derivados , Citosina/química , Desenho de Fármacos , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/genética , Organofosfonatos/química , Varíola/tratamento farmacológico , Varíola/virologia , Especificidade da Espécie , Relação Estrutura-Atividade , Termodinâmica , Vírus da Varíola/enzimologia , Vírus da Varíola/genética , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Computer analysis of full coding sequences of variola major virus strain India-1967 genome and vaccinia virus strain Copenhagen genome have been carried out. A wide set of proteins containing ankyrin-like repeats have been identified for both viruses. Only three proteins of this family of the studied viruses are highly homologous. The rest of the proteins are different. The possible role of such proteins in determination of virus tissue tropism is discussed.
Assuntos
Anquirinas/química , Vaccinia virus/química , Vírus da Varíola/química , Proteínas Virais/química , Sequência de Aminoácidos , Sequência Consenso , Genes Virais , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Vaccinia virus/genética , Vírus da Varíola/genética , Proteínas Virais/genéticaRESUMO
Analysis of variola virus nucleotide sequence revealed proteins belonging to several families which provide the virus with the possibility of overcoming the barriers of specific and non-specific host defence against viral infection. The complement-binding proteins, lymphokine-binding proteins, and serine protease inhibitors can be assigned to this type, as can the proteins providing the orthopoxviruses with resistance to interferon. The revealed differences between the genes (proteins) of variola and vaccinia viruses under study are discussed.
Assuntos
Genes Virais , Vaccinia virus/genética , Vírus da Varíola/genética , Proteínas Virais/química , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas do Sistema Complemento/metabolismo , Humanos , Dados de Sequência Molecular , Receptores de Interferon/química , Receptores de Interferon/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Homologia de Sequência de Aminoácidos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/genética , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Vaccinia virus/química , Vírus da Varíola/química , Proteínas Virais/genética , Viroses/imunologia , Viroses/microbiologiaRESUMO
Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution and type of residues at the binding regions are factors that have been identified to influence its ability to bind to complement proteins. We report that a Lister strain of vaccinia virus encodes a VCP homolog (Lis VCP) that is functional, glycosylated, has two amino acids less than the well-characterized VCP from vaccinia virus WR strain (WR VCP), and the human smallpox inhibitor of complement enzymes (SPICE) from variola virus. The glycosylated VCP of Lister is immunogenic in contrast to the weak immunogenicity of the nonglycosylated VCP. Lis VCP is the only orthopoxviral VCP homolog found to be glycosylated, and we speculate that glycosylation influences its pattern of complement inhibition. We also correlate dimerization of VCP observed only in mammalian and baculovirus expression systems to higher levels of activity than monomers, observed in the yeast expression system.
Assuntos
Proteínas Recombinantes/metabolismo , Vaccinia virus/imunologia , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Dimerização , Expressão Gênica , Glicosilação , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Varíola/imunologia , Varíola/metabolismo , Relação Estrutura-Atividade , Vaccinia virus/química , Vírus da Varíola/química , Vírus da Varíola/imunologia , Vírus da Varíola/metabolismo , Proteínas Virais/genética , Proteínas Virais/farmacologiaRESUMO
We present immunophysical modeling for VCP, SPICE, and three mutants using MD simulations and Poisson-Boltzmann-type electrostatic calculations. VCP and SPICE are homologous viral proteins that control the complement system by imitating, structurally and functionally, natural regulators of complement activation. VCP and SPICE consist of four CCP modules connected with short flexible loops. MD simulations demonstrate that the rather complex modules of VCP/SPICE and their mutants exhibit a high degree of intermodular spatial mobility, which is affected by surface mutations. Electrostatic calculations using snapshots from the MD trajectories demonstrate variable spatial distribution of the electrostatic potentials, which suggests dynamic binding properties. We use covariance analysis to identify correlated modular oscillations. We also use electrostatic similarity indices to cluster proteins with common electrostatic properties. Our results are compared with experimental data to form correlations between the overall positive electrostatic potential of VCP/SPICE with binding and activity. We show how these correlations can be used to predict binding and activity properties. This work is expected to be useful for understanding the function of native CCP-containing regulators of complement activation and receptors and for the design of antiviral therapeutics and complement inhibitors.
Assuntos
Proteínas Inativadoras do Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Termodinâmica , Vaccinia virus/imunologia , Vírus da Varíola/imunologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Valor Preditivo dos Testes , Estrutura Terciária de Proteína , Especiarias , Eletricidade Estática , Vaccinia virus/química , Vírus da Varíola/químicaRESUMO
The outbreak of monkeypox in the Unites States in the summer of 2003 was the first occurrence of this smallpox-like disease outside of Africa. This limited human epidemic resulted from cross-infection of prairie dogs by imported African rodents. Although there were no human fatalities, this outbreak illustrates that monkeypox is an emerging natural infection and a potential biological weapon. We characterized a virulence factor expressed by monkeypox (monkeypox inhibitor of complement enzymes or MOPICE). We also compared its structure and regulatory function to homologous complement regulatory proteins of variola (SPICE) and vaccinia (VCP). In multiple expression systems, 5-30% of MOPICE, SPICE, and VCP consisted of function-enhancing disulfide-linked homodimers. Mammalian cells infected with vaccinia virus also expressed VCP dimers. MOPICE bound human C3b/C4b intermediate to that of SPICE and VCP. Cofactor activity of MOPICE was similar to VCP, but both were approximately 100-fold less efficient than SPICE. SPICE and VCP, but not MOPICE, possessed decay-accelerating activity for the C3 and C5 convertases of the classical pathway. Additionally, all three regulators possessed heparin-binding capability. These studies demonstrate that MOPICE regulates human complement and suggest that dimerization is a prominent feature of these virulence factors. Thus, our data add novel information relative to the functional repertoire of these poxviral virulence factors. Furthermore, targeting and neutralizing these complement regulatory active sites via mAbs is a therapeutic approach that may enhance protection against smallpox.
Assuntos
Complemento C3b/antagonistas & inibidores , Complemento C4b/antagonistas & inibidores , Monkeypox virus/química , Monkeypox virus/imunologia , Vaccinia virus/química , Vírus da Varíola/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Enzimas Ativadoras do Complemento/metabolismo , Complemento C3b/imunologia , Complemento C3b/metabolismo , Complemento C4b/imunologia , Complemento C4b/metabolismo , Cricetinae , Dimerização , Heparina/metabolismo , Humanos , Dados de Sequência Molecular , Monkeypox virus/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Vaccinia virus/imunologia , Vírus da Varíola/imunologiaRESUMO
Although eradicated from nature more than two decades ago, the threat of smallpox has reemerged because of concerns over its use as a biological weapon. We present the structure of the poxvirus L1 protein, a molecule that is conserved throughout the poxvirus family and is nearly identical in vaccinia virus and in variola virus, which causes smallpox. L1 is a myristoylated envelope protein that is a potent target for neutralizing antibodies and an important component of current experimental vaccines. The L1 structure reveals a hydrophobic cavity located adjacent to its N terminus. The cavity would be capable of shielding the myristate moiety, which is essential for virion assembly. The structure of L1 is a step in the elucidation of molecular mechanisms common to all poxviruses that may stimulate the design of safer vaccines and new antipoxvirus drugs.
Assuntos
Poxviridae/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Anticorpos Antivirais , Sequência de Bases , Cristalografia por Raios X , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Dissulfetos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Mirísticos/química , Testes de Neutralização , Poxviridae/genética , Poxviridae/imunologia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Vacina Antivariólica/química , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Eletricidade Estática , Vaccinia virus/química , Vaccinia virus/genética , Vaccinia virus/imunologia , Vírus da Varíola/química , Vírus da Varíola/genética , Vírus da Varíola/imunologia , Proteínas do Core Viral/química , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologiaRESUMO
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.
Assuntos
Poxviridae/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Mutagênese , Filogenia , Mutação Puntual , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , Alinhamento de Sequência , Relação Estrutura-Atividade , Transfecção , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Vírus da Varíola/química , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Variola, the causative agent of smallpox, is a highly infectious double-stranded DNA virus of the orthopox genus that replicates within the cytoplasm of infected cells. For unknown reasons prominent skin manifestations, including "pox," mark the course of this systemic human disease. Here we characterized smallpox growth factor (SPGF), a protein containing an epidermal growth factor (EGF)-like domain that is conserved among orthopox viral genomes, and investigated its possible mechanistic link. We show that after recombinant expression, refolding, and purification, the EGF domain of SPGF binds exclusively to the broadly expressed cellular receptor, erb-B1 (EGF receptor), with subnanomolar affinity, stimulating the growth of primary human keratinocytes and fibroblasts. High affinity monoclonal antibodies specific for SPGF reveal in vivo immunoprotection in a murine vaccinia pneumonia model by a mechanism distinct from viral neutralization. These findings suggest that blockade of pathogenic factor actions, in general, may be advantageous to the infected host.