Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.603
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319262

RESUMO

Numerous, diverse plant viruses encode movement proteins (MPs) that aid the virus movement through plasmodesmata, the plant intercellular channels. MPs are essential for virus spread and propagation in distal tissues, and several unrelated MPs have been identified. The 30K superfamily of MPs (named after the molecular mass of tobacco mosaic virus MP, the classical model of plant virology) is the largest and most diverse MP variety, represented in 16 virus families, but its evolutionary origin remained obscure. Here, we show that the core structural domain of the 30K MPs is homologous to the jelly-roll domain of the capsid proteins (CPs) of small RNA and DNA viruses, in particular, those infecting plants. The closest similarity was observed between the 30K MPs and the CPs of the viruses in the families Bromoviridae and Geminiviridae. We hypothesize that the MPs evolved via duplication or horizontal acquisition of the CP gene in a virus that infected an ancestor of vascular plants, followed by neofunctionalization of one of the paralogous CPs, potentially through the acquisition of unique N- and C-terminal regions. During the subsequent coevolution of viruses with diversifying vascular plants, the 30K MP genes underwent explosive horizontal spread among emergent RNA and DNA viruses, likely permitting viruses of insects and fungi that coinfected plants to expand their host ranges, molding the contemporary plant virome.


Assuntos
Vírus de Plantas , Vírus do Mosaico do Tabaco , Proteínas do Capsídeo/genética , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plantas/genética , RNA , Nicotiana/genética
2.
Annu Rev Biochem ; 79: 1-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192760

RESUMO

Early influences led me first to medical school with a view to microbiology, but I felt the lack of a deeper foundation and changed to chemistry, which in turn led me to physics and mathematics. I moved to the University of Cape Town to work on the X-ray crystallography of some small organic compounds. I developed a new method of using molecular structure factors to solve the crystal structure, which won me a research studentship to Trinity College Cambridge and the Cavendish Laboratory. There I worked on the austenite-pearlite transition in steel. This is governed by the dissipation of latent heat, and I ended up numerically solving partial differential equations. I used the idea of nucleation and growth during the phase change, which had its echo when I later tackled the assembly of Tobacco mosaic virus (TMV) from its constituent RNA and protein subunits. I wanted to move on to X-ray structure analysis of large biological molecules and obtained a Nuffield Fellowship to work in J.D. Bernal's department at Birkbeck College, London. There, I met Rosalind Franklin, who had taken up the study of TMV. I was able to interpret some of Franklin's beautiful X-ray diffraction patterns of the virus particle. From then on, my fate was sealed. After Franklin's untimely death in 1958, I moved in 1962 to the newly built MRC Laboratory of Molecular Biology in Cambridge, which, under Max Perutz, housed the original MRC unit from the Cavendish Laboratory. I was thus privileged to join the Laboratory at an early stage in its expansion and consequently able to take advantage of, and to help build up, its then unique environment of intellectual and technological sophistication. There I have remained ever since.


Assuntos
Microbiologia/história , Cromatina/ultraestrutura , História do Século XX , Lituânia , Microscopia Eletrônica , África do Sul , Vírus do Mosaico do Tabaco/ultraestrutura , Difração de Raios X
3.
PLoS Pathog ; 19(12): e1011796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060599

RESUMO

Plant viruses seriously disrupt crop growth and development, and classic protein-targeted antiviral drugs could not provide complete protection against them. It is urgent to develop antiviral compounds with novel targets. Photodynamic therapy shows potential in controlling agricultural pests, but nonselective damage from reactive oxygen species (ROS) unexpectedly affects healthy tissues. A G-quadruplex (G4)-forming sequence in the tobacco mosaic virus (TMV) genome was identified to interfere the RNA replication in vitro, and affect the proliferation of TMV in tobacco. N-methyl mesoporphyrin IX stabilizing the G4 structure exhibited inhibition against viral proliferation, which was comparable to the inhibition effect of ribavirin. This indicated that G4 could work as an antiviral target. The large conjugate planes shared by G4 ligands and photosensitizers (PSs) remind us that the PSs could work as antiviral agents by targeting G4 in the genome of TMV. Chlorin e6 (Ce6) was identified to stabilize the G4 structure in the dark and selectively cleave the G4 sequence by producing ROS upon LED-light irradiation, leading to 92.2% inhibition against TMV in vivo, which is higher than that of commercial ningnanmycin. The inhibition of Ce6 was lost against the mutant variants lacking the G4-forming sequence. These findings indicated that the G-quadruplex in the TMV genome worked as an important structural element regulating viral proliferation, and could act as the antiviral target of photodynamic therapy.


Assuntos
Fotoquimioterapia , Vírus do Mosaico do Tabaco , Espécies Reativas de Oxigênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Proliferação de Células , Relação Estrutura-Atividade
4.
Plant J ; 116(6): 1737-1747, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37694805

RESUMO

Dicer-like (DCL) proteins are principal components of RNA silencing, a major defense mechanism against plant virus infections. However, their functions in suppressing virus-induced disease phenotypes remain largely unknown. Here, we identified a role for tomato (Solanum lycopersicum) DCL2b in regulating the wiry leaf phenotype during defense against tobacco mosaic virus (TMV). Knocking out SlyDCL2b promoted TMV accumulation in the leaf primordium, resulting in a wiry phenotype in distal leaves. Biochemical and bioinformatics analyses showed that 22-nt virus-derived small interfering RNAs (vsiRNAs) accumulated less abundantly in slydcl2b mutants than in wild-type plants, suggesting that SlyDCL2b-dependent 22-nt vsiRNAs are required to exclude virus from leaf primordia. Moreover, the wiry leaf phenotype was accompanied by upregulation of Auxin Response Factors (ARFs), resulting from a reduction in trans-acting siRNAs targeting ARFs (tasiARFs) in TMV-infected slydcl2b mutants. Loss of tasiARF production in the slydcl2b mutant was in turn caused by inhibition of miRNA390b function. Importantly, silencing SlyARF3 and SlyARF4 largely restored the wiry phenotype in TMV-infected slydcl2b mutants. Our work exemplifies the complex relationship between RNA viruses and the endogenous RNA silencing machinery, whereby SlyDCL2b protects the normal development of newly emerging organs by excluding virus from these regions and thus maintaining developmental silencing.


Assuntos
Vírus de Plantas , Solanum lycopersicum , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/fisiologia , Solanum lycopersicum/genética , Vírus de Plantas/genética , RNA Interferente Pequeno/genética , Ácidos Indolacéticos , Folhas de Planta/genética , Fenótipo , Doenças das Plantas
5.
Mol Plant Microbe Interact ; 37(1): 36-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750816

RESUMO

Our earlier research showed that an interspecific tobacco hybrid (Nicotiana edwardsonii 'Columbia' [NEC]) displays elevated levels of salicylic acid (SA) and enhanced resistance to localized necrotic symptoms (hypersensitive response [HR]) caused by tobacco mosaic virus (TMV) and tobacco necrosis virus (TNV), as compared with another interspecific hybrid (Nicotiana edwardsonii [NE]) derived from the same parents. In the present study, we investigated whether symptomatic resistance in NEC is indeed associated with the inhibition of TMV and TNV and whether SA plays a role in this process. We demonstrated that enhanced viral resistance in NEC is manifested as both milder local necrotic (HR) symptoms and reduced levels of TMV and TNV. The presence of an adequate amount of SA contributes to the enhanced defense response of NEC to TMV and TNV, as the absence of SA resulted in seriously impaired viral resistance. Elevated levels of subcellular tripeptide glutathione (GSH) in NEC plants in response to viral infection suggest that in addition to SA, GSH may also contribute to the elevated viral resistance of NEC. Furthermore, we found that NEC displays an enhanced resistance not only to viral pathogens but also to bacterial infections and abiotic oxidative stress induced by paraquat treatments. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ácido Salicílico , Vírus do Mosaico do Tabaco , Ácido Salicílico/farmacologia , Nicotiana , Proteínas de Plantas , Plantas , Vírus do Mosaico do Tabaco/fisiologia , Glutationa , Bactérias , Estresse Fisiológico , Doenças das Plantas
6.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262958

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Nicotiana , Melhoramento Vegetal , Horticultura
7.
PLoS Pathog ; 18(12): e1011062, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574436

RESUMO

Tobacco mosaic virus movement protein (TMV MP) is essential for virus spread between cells. To accomplish its task, TMV MP binds viral RNA, interacts with components of the cytoskeleton, and increases the size exclusion limit (SEL) of plasmodesmata. Plasmodesmata are gated intercellular channels that allow passage of small molecules and macromolecules, including RNA and protein, between plant cells. Moreover, plasmodesmata are diverse and those connecting different cell types appear to have unique mechanisms to regulate macromolecular trafficking, which likely contributes to the establishment of distinct cell boundaries. Consequently, TMV MP might be competent to mediate RNA transport through some but not all plasmodesmal gates. Due to a lack of viral mutants defective for movement between specific cell types, the ability of TMV MP in this regard is incompletely understood. In contrast, a number of trafficking impaired Potato spindle tuber viroid (PSTVd) mutants have been identified. PSTVd is a systemically infectious non-coding RNA that nevertheless can perform all functions required for replication as well as cell-to-cell and systemic spread. Previous studies have shown that PSTVd employs different structure and sequence elements to move between diverse cell types in host plants, and mutants defective for transport between specific cell types have been identified. Therefore, PSTVd may serve as a tool to analyze the functions of MPs of viral and cellular origin. To probe the RNA transport activity of TMV MP, transgenic plants expressing the protein were inoculated with PSTVd mutants. Remarkably, TMV MP complemented a PSTVd mutant defective for mesophyll entry but could not support two mutants impaired for phloem entry, suggesting it fails to productively interface with plasmodesmata at the phloem boundary and that additional viral and host factors may be required. Consistent with this idea, TMV co-infection, but not the combination of MP and coat protein (CP) expression, was able to complement one of the phloem entry mutants. These observations suggest that phloem loading is a critical impediment to establishing systemic infection that could involve the entire ensemble of TMV proteins. They also demonstrate a novel strategy for analysis of MPs.


Assuntos
Solanum tuberosum , Vírus do Mosaico do Tabaco , Viroides , Vírus do Mosaico do Tabaco/metabolismo , Viroides/genética , Solanum tuberosum/metabolismo , Floema/genética , Floema/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana
8.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709860

RESUMO

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Assuntos
Proteínas do Capsídeo , RNA Mensageiro , Vírus do Mosaico do Tabaco , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Vírus do Mosaico do Tabaco/genética , Proteínas do Capsídeo/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Feminino , Vacinas contra COVID-19/administração & dosagem , Vírion/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Lipossomos
9.
Bioorg Chem ; 147: 107415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701597

RESUMO

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Assuntos
Antivirais , Proteínas do Capsídeo , Fosfatos , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Fosfatos/química , Fosfatos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Simulação de Acoplamento Molecular
10.
Luminescence ; 39(6): e4804, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859763

RESUMO

Early and sensitive detection of tobacco mosaic virus (TMV) is of great significance for improving crop yield and protecting germplasm resources. Herein, we constructed a novel fluorescence sensor to detect TMV RNA (tRNA) through double strand specific nuclease (DSN) cycle and activator regenerative electron transfer atom transfer radical polymerization (ARGET ATRP) dual signal amplification strategy. The hairpin DNA complementarily paired with tRNA was used as a recognition unit to specifically capture tRNA. By the double-stranded DNA hydrolyzed with DSN, tRNA is released to open more hairpin DNA, and more complementary DNA (cDNA) is bound to the surface of the magnetic beads (MBs) to achieve the first amplification. After binding with the initiator, the cDNA employed ARGET ATRP to attach more fluorescent signal molecules to the surface of MBs, thus achieving the second signal amplification. Under the optimal experimental conditions, the logarithm of fluorescence intensity versus tRNA concentration showed a good linear relationship in the range of 0.01-100 pM, with a detection limit of 1.03 fM. The limit of detection (LOD) was calculated according to LOD = 3 N/S. Besides, the sensor showed good reproducibility and stability, which present provided new method for early and highly sensitive detection for plant viruses.


Assuntos
RNA Viral , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/química , RNA Viral/análise , Fluorescência , Limite de Detecção , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Espectrometria de Fluorescência
11.
Pestic Biochem Physiol ; 198: 105728, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225082

RESUMO

BACKGROUND: Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae. It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. RESULT: This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with ß-(1,3) glucoside bond as the main chain and ß-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916-338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa. The overexpression of resistance genes such as NPR1, PR1 and PR5, and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana. Besides, LW-1 induced crops resistance against plant pathogenic fungi. CONCLUSION: Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.


Assuntos
Arabidopsis , Vírus do Mosaico do Tabaco , Resistência à Doença/genética , Transdução de Sinais , Nicotiana , Glucosídeos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética
12.
Pestic Biochem Physiol ; 202: 105896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879345

RESUMO

The objective of this study was to investigate the mechanism underlying LW-1-induced resistance to TMV in wild-type and salicylic acid (SA)-deficient NahG transgenic tobacco plants. Our findings revealed that LW-1 failed to induce antivirus infection activity and increase SA content in NahG tobacco, indicating the crucial role of SA in these processes. Meanwhile, LW-1 triggered defense-related early-signaling nitric oxide (NO) generation, as evidenced by the emergence of NO fluorescence in both types of tobacco upon treatment with LW-1, however, NO fluorescence was stronger in NahG compared to wild-type tobacco. Notably, both of them were eliminated by the NO scavenger cPTIO, which also reversed LW-1-induced antivirus activity and the increase of SA content, suggesting that NO participates in LW-1-induced resistance to TMV, and may act upstream of the SA pathway. Defense-related enzymes and genes were detected in tobacco with or without TMV inoculation, and the results showed that LW-1 regulated both enzyme activity (ß-1,3-glucanase [GLU], catalase [CAT] and phenylalanine ammonia-lyase [PAL]) and gene expression (PR1, PAL, WYKY4) through NO signaling in both SA-dependent and SA-independent pathways.


Assuntos
Resistência à Doença , Nicotiana , Óxido Nítrico , Doenças das Plantas , Ácido Salicílico , Vírus do Mosaico do Tabaco , Nicotiana/metabolismo , Nicotiana/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Óxido Nítrico/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
13.
Chem Biodivers ; 21(2): e202301737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38204291

RESUMO

A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 µg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 µg/mL, and the EC50 value of protective activity of K5 was 120.6 µg/mL, which was superior to that of NNM 207.0 µg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.


Assuntos
Quinazolinonas , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Quinazolinonas/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Desenho de Fármacos
14.
Nano Lett ; 23(11): 5281-5287, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272864

RESUMO

Biotemplated syntheses have emerged as an efficient strategy to control the assembly of metal nanoparticles (NPs) and generate promising plasmonic properties for sensing or biomedical applications. However, understanding the nucleation and growth mechanisms of metallic nanostructures on biotemplate is an essential prerequisite to developing well-controlled nanotechnologies. Here, we used liquid cell Transmission Electron Microscopy (TEM) to reveal how the formation kinetics of gold NPs affects their size and density on Tobacco Mosaic Virus (TMV). These in situ insights are used as a guideline to optimize bench-scale synthesis with the possibility to homogenize the coverage and tune the density of gold NPs on TMV. In line with in situ TEM observations, fluorescence spectroscopy confirms that the nucleation of NPs occurs on the virus capsid rather than in solution. The proximity of gold NPs on TMV allows shifting the plasmonic resonance of the assembly in the biological window.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Vírus do Mosaico do Tabaco , Nanopartículas Metálicas/química , Vírus do Mosaico do Tabaco/química , Ouro/química , Microscopia Eletrônica de Transmissão
15.
Nano Lett ; 23(5): 2056-2064, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695738

RESUMO

The phenotype of tumor-associated macrophages plays an important role in their function of regulating the tumor immune microenvironment. The M1-phenotype macrophages display tumor-killing and immune activating functions. Here we show that the tobacco mosaic virus (TMV), a rod-like plant virus, can polarize macrophages to an M1 phenotype and shape a tumor-suppressive microenvironment. RAW 264.7 cells and bone marrow derived-macrophages (BMDMs) can recognize TMV via Toll-like receptor-4, and then the MAPK and NF-κB signaling pathways are activated, leading to the production of pro-inflammatory factors. Furthermore, the in vivo assessments on a subcutaneous co-injection tumor model show that the TMV-polarized BMDMs shape a tumor-suppressive microenvironment, resulting in remarkable delay of 4T1 tumor growth. Another in vivo assessment on an established tumor model indicates the high tumor-metastasis-inhibiting capacity of TMV-polarized BMDMs. This work suggests a role for this plant virus in macrophage-mediated therapeutic approaches and provides a strategy for tumor immunotherapy.


Assuntos
Vírus do Mosaico do Tabaco , Animais , Camundongos , Macrófagos , Imunoterapia , Células RAW 264.7 , Microambiente Tumoral
16.
Nano Lett ; 23(12): 5785-5793, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327572

RESUMO

Spherical nanoparticles (SNPs) from tobacco mild green mosaic virus (TMGMV) were developed and characterized, and their application for agrochemical delivery was demonstrated. Specifically, we set out to develop a platform for pesticide delivery targeting nematodes in the rhizosphere. SNPs were obtained by thermal shape-switching of the TMGMV. We demonstrated that cargo can be loaded into the SNPs during thermal shape-switching, enabling the one-pot synthesis of functionalized nanocarriers. Cyanine 5 and ivermectin were encapsulated into SNPs to achieve 10% mass loading. SNPs demonstrated good mobility and soil retention slightly higher than that of TMGMV rods. Ivermectin delivery to Caenorhabditis elegans using SNPs was determined after passing the formulations through soil. Using a gel burrowing assay, we demonstrate the potent efficacy of SNP-delivered ivermectin against nematodes. Like many pesticides, free ivermectin is adsorbed in the soil and did not show efficacy. The SNP nanotechnology offers good soil mobility and a platform technology for pesticide delivery to the rhizosphere.


Assuntos
Nanopartículas , Praguicidas , Vírus do Mosaico do Tabaco , Animais , Vírus do Mosaico do Tabaco/química , Ivermectina/farmacologia , Nanopartículas/química , Praguicidas/farmacologia , Caenorhabditis elegans , Solo
17.
Plant J ; 112(3): 677-693, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087000

RESUMO

Calcium is an important plant immune signal that is essential for activating host resistance, but how RNA viruses manipulate calcium signals to promote their infections remains largely unknown. Here, we demonstrated that tobacco mosaic virus (TMV) coat protein (CP)-interacting protein L (IP-L) associates with calmodulin-like protein 30 (NbCML30) in the cytoplasm and nucleus, and can suppress its expression at the nucleic acid and protein levels. NbCML30, which lacks the EF-hand conserved domain and cannot bind to Ca2+ , was located in the cytoplasm and nucleus and was downregulated by TMV infection. NbCML30 silencing promoted TMV infection, while its overexpression inhibited TMV infection by activating Ca2+ -dependent oxidative stress in plants. NbCML30-mediated resistance to TMV mainly depends on IP-L regulation as the facilitation of TMV infection by silencing NbCML30 was canceled by co-silencing NbCML30 and IP-L. Overall, these findings indicate that in the absence of any reported silencing suppressor activity, TMV CP manipulates IP-L to inhibit NbCML30, influencing its Ca2+ -dependent role in the oxidative stress response. These results lay a theoretical foundation that will enable us to engineer tobacco (Nicotiana spp.) with improved TMV resistance in the future.


Assuntos
Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/fisiologia , Calmodulina/genética , Calmodulina/metabolismo , Cálcio/metabolismo , Nicotiana/metabolismo , Doenças das Plantas/genética
18.
Funct Integr Genomics ; 23(3): 272, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37568053

RESUMO

Plants release a mixture of volatile compounds when subjects to environmental stress, allowing them to transmit information to neighboring plants. Here, we find that Nicotiana benthamiana plants infected with tobacco mosaic virus (TMV) induces defense responses in neighboring congeners. Analytical screening of volatiles from N. benthamiana at 7 days post inoculation (dpi) using an optimized SPME-GC-MS method showed that TMV triggers the release of several volatiles, such as (E)-2-octenal, 6-methyl-5-hepten-2-one, and geranylacetone. Exposure to (E)-2-octenal enhances the resistance of N. benthamiana plants to TMV and triggers the immune system with upregulation of pathogenesis-related genes, such as NbPR1a, NbPR1b, NbPR2, and NbNPR1, which are related to TMV resistance. Furthermore, (E)-2-octenal upregulates jasmonic acid (JA) that levels up to 400-fold in recipient N. benthamiana plants and significantly affects the expression pattern of key genes in the JA/ET signaling pathway, such as NbMYC2, NbERF1, and NbPDF1.2, while the salicylic acid (SA) level is not significantly affected. Our results show for the first time that the volatile (E)-2-octenal primes the JA/ET pathway and then activates immune responses, ultimately leading to enhanced TMV resistance in adjacent N. benthamiana plants. These findings provide new insights into the role of airborne compounds in virus-induced interplant interactions.


Assuntos
Nicotiana , Vírus do Mosaico do Tabaco , Humanos , Nicotiana/genética , Nicotiana/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Doenças das Plantas/genética
19.
Plant Biotechnol J ; 21(3): 635-645, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511837

RESUMO

Molecular farming technology using transiently transformed Nicotiana plants offers an economical approach to the pharmaceutical industry to produce an array of protein targets including vaccine antigens and therapeutics. It can serve as a desirable alternative approach for those proteins that are challenging or too costly to produce in large quantities using other heterologous protein expression systems. However, since cost metrics are such a critical factor in selecting a production host, any system-wide modifications that can increase recombinant protein yields are key to further improving the platform and making it applicable for a wider range of target molecules. Here, we report on the development of a new approach to improve target accumulation in an established plant-based expression system that utilizes viral-based vectors to mediate transient expression in Nicotiana benthamiana. We show that by engineering the host plant to support viral vectors to spread more effectively between host cells through plasmodesmata, protein target accumulation can be increased by up to approximately 60%.


Assuntos
Vírus do Mosaico do Tabaco , Proteínas Recombinantes/genética , Plantas Geneticamente Modificadas/metabolismo , Vírus do Mosaico do Tabaco/genética , Nicotiana/genética , Transporte Proteico , Vetores Genéticos
20.
J Exp Bot ; 74(17): 5236-5254, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37246636

RESUMO

Plant non-specific lipid transfer proteins (nsLTPs) are small, cysteine-rich proteins that play significant roles in biotic and abiotic stress responses; however, the molecular mechanism of their functions against viral infections remains unclear. In this study, we employed virus-induced gene-silencing and transgenic overexpression to functionally analyse a type-I nsLTP in Nicotiana benthamiana, NbLTP1, in the immunity response against tobacco mosaic virus (TMV). NbLTP1 was inducible by TMV infection, and its silencing increased TMV-induced oxidative damage and the production of reactive oxygen species (ROS), compromised local and systemic resistance to TMV, and inactivated the biosynthesis of salicylic acid (SA) and its downstream signaling pathway. The effects of NbLTP1-silencing were partially restored by application of exogenous SA. Overexpressing NbLTP1 activated genes related to ROS scavenging to increase cell membrane stability and maintain redox homeostasis, confirming that an early ROS burst followed by ROS suppression at the later phases of pathogenesis is essential for resistance to TMV infection. The cell-wall localization of NbLTP1 was beneficial to viral resistance. Overall, our results showed that NbLTP1 positively regulates plant immunity against viral infection through up-regulating SA biosynthesis and its downstream signaling component, NONEXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), which in turn activates pathogenesis-related genes, and by suppressing ROS accumulation at the later phases of viral pathogenesis.


Assuntos
Nicotiana , Vírus do Mosaico do Tabaco , Nicotiana/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA