Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.394
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 69(9): 2059-2076, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638562

RESUMO

Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Sarcoma , Animais , Vírus do Sarcoma Aviário/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Vírus Oncogênicos , Receptores Virais , Microambiente Tumoral
2.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238588

RESUMO

Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.


Assuntos
Proteínas Aviárias/imunologia , Vírus do Sarcoma Aviário/imunologia , Antígeno 2 do Estroma da Médula Óssea/imunologia , Evolução Molecular , Galliformes/imunologia , Sarcoma Aviário/imunologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/genética , Vírus do Sarcoma Aviário/genética , Vírus do Sarcoma Aviário/patogenicidade , Antígeno 2 do Estroma da Médula Óssea/genética , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/virologia , Galliformes/genética , Galliformes/virologia , Regulação da Expressão Gênica , Células HEK293 , HIV-1/genética , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Passeriformes/genética , Passeriformes/imunologia , Passeriformes/virologia , Sarcoma Aviário/genética , Sarcoma Aviário/virologia , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
3.
J Biol Chem ; 293(49): 18841-18853, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30309982

RESUMO

The Gag protein of avian sarcoma virus (ASV) lacks an N-myristoyl (myr) group, but contains structural domains similar to those of HIV-1 Gag. Similarly to HIV-1, ASV Gag accumulates on the plasma membrane (PM) before egress; however, it is unclear whether the phospholipid PI(4,5)P2 binds directly to the matrix (MA) domain of ASV Gag, as is the case for HIV-1 Gag. Moreover, the role of PI(4,5)P2 in ASV Gag localization and budding has been controversial. Here, we report that substitution of residues that define the PI(4,5)P2-binding site in the ASV MA domain (reported in an accompanying paper) interfere with Gag localization to the cell periphery and inhibit the production of virus-like particles (VLPs). We show that co-expression of Sprouty2 (Spry2) or the pleckstrin homology domain of phospholipase Cδ (PH-PLC), two proteins that bind PI(4,5)P2, affects ASV Gag trafficking to the PM and budding. Replacement of the N-terminal 32 residues of HIV-1 MA, which encode its N-terminal myr signal and its PI(4,5)P2-binding site, with the structurally equivalent N-terminal 24 residues of ASV MA created a chimera that localized at the PM and produced VLPs. In contrast, the homologous PI(4,5)P2-binding signal in ASV MA could target HIV-1 Gag to the PM when substituted, but did not support budding. Collectively, these findings reveal a basic patch in both ASV and HIV-1 Gag capable of mediating PM binding and budding for ASV but not for HIV-1 Gag. We conclude that PI(4,5)P2 is a strong determinant of ASV Gag targeting to the PM and budding.


Assuntos
Vírus do Sarcoma Aviário/química , Membrana Celular/metabolismo , Produtos do Gene gag/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Chlorocebus aethiops , Produtos do Gene gag/química , Produtos do Gene gag/genética , Humanos , Proteínas de Membrana/metabolismo , Mutação , Fosfolipase C delta/metabolismo , Ligação Proteica , Domínios Proteicos , Liberação de Vírus/fisiologia
4.
J Biol Chem ; 293(49): 18828-18840, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30309983

RESUMO

For most retroviruses, including HIV-1, binding of the Gag polyprotein to the plasma membrane (PM) is mediated by interactions between Gag's N-terminal myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the PM. The Gag protein of avian sarcoma virus (ASV) lacks the N-myristoylation signal but contains structural domains having functions similar to those of HIV-1 Gag. The molecular mechanism by which ASV Gag binds to the PM is incompletely understood. Here, we employed NMR techniques to elucidate the molecular determinants of the membrane-binding domain of ASV MA (MA87) to lipids and liposomes. We report that MA87 binds to the polar head of phosphoinositides such as PI(4,5)P2 We found that MA87 binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups, indicating that the MA87-IP binding is governed by charge-charge interactions. Using a sensitive NMR-based liposome-binding assay, we show that binding of MA87 to liposomes is enhanced by incorporation of PI(4,5)P2 and phosphatidylserine. We also show that membrane binding is mediated by a basic surface formed by Lys-6, Lys-13, Lys-23, and Lys-24. Substitution of these residues to glutamate abolished binding of MA87 to both IPs and liposomes. In an accompanying paper, we further report that mutation of these lysine residues diminishes Gag assembly on the PM and inhibits ASV particle release. These findings provide a molecular basis for ASV Gag binding to the inner leaflet of the PM and advance our understanding of the basic mechanisms of retroviral assembly.


Assuntos
Vírus do Sarcoma Aviário/química , Membrana Celular/metabolismo , Produtos do Gene gag/metabolismo , Montagem de Vírus/fisiologia , Acilação , Sítios de Ligação , Membrana Celular/química , Produtos do Gene gag/química , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Domínios Proteicos , Eletricidade Estática
5.
J Biol Chem ; 292(19): 7817-7827, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28341742

RESUMO

Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells.


Assuntos
Vírus do Sarcoma Aviário/fisiologia , Fusão de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Internalização do Vírus , Células A549 , Ácidos/química , Animais , Linhagem Celular , Endocitose , Endossomos/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Isoformas de Proteínas/metabolismo , Receptores Virais/metabolismo , Temperatura , Vesículas Transportadoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(22): E2947-56, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25991858

RESUMO

Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor-envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVB(S3), TVC, TVB(T), and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA-EnvA, 99.6%; TVB(S3)-EnvB, 97.7%; TVC-EnvC, 98.2%; and DR-46TVB-EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor-envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.


Assuntos
Vírus do Sarcoma Aviário/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vias Neurais/citologia , Receptores Virais/metabolismo , Proteínas do Envelope Viral , Animais , Citometria de Fluxo , Células HEK293 , Humanos , Microscopia de Fluorescência , Ratos , Receptores Virais/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
J Virol ; 89(4): 2136-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473063

RESUMO

UNLABELLED: The study of the interactions of subgroup A avian sarcoma and leucosis viruses [ASLV(A)] with the TVA receptor required to infect cells offers a powerful experimental model of retroviral entry. Several regions and specific residues in the TVA receptor have previously been identified to be critical determinants of the binding affinity with ASLV(A) envelope glycoproteins and to mediate efficient infection. Two homologs of the TVA receptor have been cloned: the original quail TVA receptor, which has been the basis for most of the initial characterization of the ASLV(A) TVA, and the chicken TVA receptor, which is 65% identical to the quail receptor overall but identical in the region thought to be critical for infection. Our previous work characterized three mutant ASLV(A) isolates that could efficiently bind and infect cells using the chicken TVA receptor homolog but not using the quail TVA receptor homolog, with the infectivity of one mutant virus being >500-fold less with the quail TVA receptor. The mutant viruses contained mutations in the hr1 region of the surface glycoprotein. Using chimeras of the quail and chicken TVA receptors, we have identified new residues of TVA critical for the binding affinity and entry of ASLV(A) using the mutant glycoproteins and viruses to probe the function of those residues. The quail TVA receptor required changes at residues 10, 14, and 31 of the corresponding chicken TVA residues to bind wild-type and mutant ASLV(A) glycoproteins with a high affinity and recover the ability to mediate efficient infection of cells. A model of the TVA determinants critical for interacting with ASLV(A) glycoproteins is proposed. IMPORTANCE: A detailed understanding of how retroviruses enter cells, evolve to use new receptors, and maintain efficient entry is crucial for identifying new targets for combating retrovirus infection and pathogenesis, as well as for developing new approaches for targeted gene delivery. Since all retroviruses share an envelope glycoprotein organization, they likely share a mechanism of receptor triggering to begin the entry process. Multiple, noncontiguous interaction determinants located in the receptor and the surface (SU) glycoprotein hypervariable domains are required for binding affinity and to restrict or broaden receptor usage. In this study, further mechanistic details of the entry process were elucidated by characterizing the ASLV(A) glycoprotein interactions with the TVA receptor required for entry. The ASLV(A) envelope glycoproteins are organized into functional domains that allow changes in receptor choice to occur by mutation and/or recombination while maintaining a critical level of receptor binding affinity and an ability to trigger glycoprotein conformational changes.


Assuntos
Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/metabolismo , Vírus do Sarcoma Aviário/fisiologia , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Proteínas Aviárias/genética , Galinhas , Clonagem Molecular , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Codorniz , Receptores Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/genética
8.
Virus Genes ; 52(3): 365-71, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27108997

RESUMO

Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/virologia , Proteínas de Fusão gag-onc/genética , Proteínas Oncogênicas/genética , Vírus Oncogênicos/genética , Doenças das Aves Domésticas/virologia , Proteínas Tirosina Quinases/genética , Animais , Vírus da Leucose Aviária/isolamento & purificação , Vírus da Leucose Aviária/patogenicidade , Vírus do Sarcoma Aviário/genética , Sequência de Bases , Embrião de Galinha , Galinhas/virologia , DNA Viral , Fibrossarcoma/virologia , Produtos do Gene gag/genética , Genes Virais , Vírus Auxiliares/genética , Retroviridae/genética , Replicação Viral
9.
Cell Mol Life Sci ; 72(23): 4671-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26109426

RESUMO

Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.


Assuntos
Proteínas Aviárias/genética , Vírus do Sarcoma Aviário/genética , Engenharia Genética/métodos , Células-Tronco Pluripotentes Induzidas/virologia , Receptores Virais/genética , Proteínas Aviárias/metabolismo , Vírus do Sarcoma Aviário/patogenicidade , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Elementos de DNA Transponíveis , Citometria de Fluxo/métodos , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Receptores Virais/metabolismo
10.
J Gen Virol ; 95(Pt 9): 2060-2070, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903328

RESUMO

Ancient endogenous retroviruses (ERVs), designated endogenous avian retrovirus (EAVs), are present in all Gallus spp. including the chicken, and resemble the modern avian sarcoma and leukosis viruses (ASLVs). The EAVs comprise several distinct retroviruses, including EAV-0, EAV-E51 and EAV-HP, as well as a putative member previously named the avian retrotransposon of chickens (ART-CH). Thus far, only the EAV-HP elements have been well characterized. Here, we determined sequences of representative EAV-0 and EAV-E51 proviruses by cloning and data mining of the 2011 assembly of the Gallus gallus genome. Although the EAV-0 elements are primarily deleted in the env region, we identified two complete EAV-0 env genes within the G. gallus genome and prototype elements sharing identity with an EAV-E51-related clone previously designated EAV-E33. Prototype EAV-0, EAV-E51 and EAV-E33 gag, pol and env gene sequences used for phylogenetic analysis of deduced proteins showed that the EAVs formed three distinct clades, with EAV-0 sharing the last common ancestor with the ASLVs. The EAV-E51 clade showed the greatest level of divergence compared with other EAVs or ASLVs, suggesting that these ERVs represented exogenous retroviruses that evolved and integrated into the germline over a long period of time. Moreover, the degree of divergence between the chicken and red jungle fowl EAV-E51 sequences suggested that they were more ancient than the other EAVs and may have diverged through mutations that accumulated post-integration. Finally, we showed that the ART-CH elements were chimeric defective ERVs comprising portions of EAV-E51 and EAV-HP rather than authentic retrotransposons.


Assuntos
Vírus da Leucose Aviária/genética , Vírus do Sarcoma Aviário/genética , Galinhas/virologia , Retrovirus Endógenos/genética , Retroelementos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Galinhas/genética , DNA Viral/genética , Bases de Dados de Ácidos Nucleicos , Produtos do Gene gag/genética , Variação Genética , Genoma Viral/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de RNA
11.
J Virol ; 87(4): 2137-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221555

RESUMO

Integrated retroviral DNA is subject to epigenetic transcriptional silencing at different frequencies. This process is mediated by repressive DNA methylation and histone modifications on viral chromatin. However, the detailed mechanisms by which retroviral silencing is initiated and maintained are not well understood. Using a model system in which avian sarcoma virus (ASV) DNA is epigenetically repressed in mammalian cells, we previously found that a cellular scaffolding protein, Daxx, acts as an antiretroviral factor that promotes epigenetic repression through recruitment of histone deacetylases (HDACs). Here we show that human Daxx protein levels are increased in response to retroviral infection and that Daxx acts at the time of infection to initiate epigenetic repression. Consistent with a rapid and active antiviral epigenetic response, we found that repressive histone marks and long terminal repeat (LTR) DNA methylation could be detected within 12 h to 3 days postinfection, respectively. Daxx was also found to be required for long-term ASV silencing maintenance and full viral DNA methylation, and it was physically associated with both viral DNA and DNA methyltransferases (DNMTs). These findings support a model in which incoming retroviral protein-DNA complexes are detected by Daxx, and the integrated provirus is rapidly chromatinized and repressed by DNA methylation and histone modification as part of an antiviral response. These results uncover a possible direct and active antiviral mechanism by which DNMTs can be recruited to retroviral DNA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus do Sarcoma Aviário/genética , Metilação de DNA , Repressão Epigenética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Animais , Vírus do Sarcoma Aviário/fisiologia , Linhagem Celular , Proteínas Correpressoras , Inativação Gênica , Humanos , Chaperonas Moleculares
12.
PLoS Pathog ; 8(5): e1002694, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589725

RESUMO

Disparate enveloped viruses initiate infection by fusing with endosomes. However, the highly diverse and dynamic nature of endosomes impairs mechanistic studies of fusion and identification of sub-cellular sites supporting the nucleocapsid release. We took advantage of the extreme stability of avian retrovirus-receptor complexes at neutral pH and of acid-dependence of virus-endosome fusion to isolate the latter step from preceding asynchronous internalization/trafficking steps. Viruses were trapped within endosomes in the presence of NH4Cl. Removal of NH4Cl resulted in a quick and uniform acidification of all subcellular compartments, thereby initiating synchronous viral fusion. Single virus imaging demonstrated that fusion was initiated within seconds after acidification and often culminated in the release of the viral core from an endosome. Comparative studies of cells expressing either the transmembrane or GPI-anchored receptor isoform revealed that the transmembrane receptor delivered the virus to more fusion-permissive compartments. Thus the identity of endosomal compartments, in addition to their acidity, appears to modulate viral fusion. A more striking manifestation of the virus delivery to distinct compartments in the presence of NH4Cl was the viral core release into the cytosol of cells expressing the transmembrane receptor and into endosomes of cells expressing the GPI-anchored isoform. In the latter cells, the newly released cores exhibited restricted mobility and were exposed to a more acidic environment than the cytoplasm. These cores appear to enter into the cytosol after an additional slow temperature-dependent step. We conclude that the NH4Cl block traps the virus within intralumenal vesicles of late endosomes in cells expressing the GPI-anchored receptor. Viruses surrounded by more than one endosomal membrane release their core into the cytoplasm in two steps--fusion with an intralumenal vesicle followed by a yet unknown temperature-dependent step that liberates the core from late endosomes.


Assuntos
Vírus do Sarcoma Aviário/genética , Vírus do Sarcoma Aviário/metabolismo , Endossomos/virologia , Proteínas do Core Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Cloreto de Amônio/química , Animais , Compartimento Celular , Linhagem Celular , Chlorocebus aethiops , Endossomos/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/biossíntese , Transporte Proteico , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Proteínas do Core Viral/genética , Proteínas Virais de Fusão/genética , Internalização do Vírus
13.
Virol J ; 11: 100, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24884573

RESUMO

BACKGROUND: The antiviral protein Daxx acts as a restriction factor of avian sarcoma virus (ASV; Retroviridae) in mammalian cells by promoting epigenetic silencing of integrated proviral DNA. Although Daxx is encoded by a type I (α/ß) interferon-stimulated gene, the requirement for Daxx in the interferon anti-retroviral response has not been elucidated. In this report, we describe the results of experiments designed to investigate the role of Daxx in the type I interferon-induced anti-ASV response. FINDINGS: Using an ASV reporter system, we show that type I interferons are potent inhibitors of ASV replication. We demonstrate that, while Daxx is necessary to silence ASV gene expression in the absence of interferons, type I interferons are fully-capable of inducing an antiviral state in the absence of Daxx. CONCLUSIONS: These results provide evidence that Daxx is not essential for the anti-ASV interferon response in mammalian cells, and that interferons deploy multiple, redundant antiviral mechanisms to protect cells from ASV.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Vírus do Sarcoma Aviário/imunologia , Vírus do Sarcoma Aviário/fisiologia , Interferon Tipo I/imunologia , Proteínas Nucleares/imunologia , Replicação Viral , Animais , Aves , Linhagem Celular , Proteínas Correpressoras , Humanos , Chaperonas Moleculares
14.
PLoS Pathog ; 7(1): e1001260, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21283788

RESUMO

A large group of viruses rely on low pH to activate their fusion proteins that merge the viral envelope with an endosomal membrane, releasing the viral nucleocapsid. A critical barrier to understanding these events has been the lack of approaches to study virus-cell membrane fusion within acidic endosomes, the natural sites of virus nucleocapsid capsid entry into the cytosol. Here we have investigated these events using the highly tractable subgroup A avian sarcoma and leukosis virus envelope glycoprotein (EnvA)-TVA receptor system. Through labeling EnvA pseudotyped viruses with a pH-sensitive fluorescent marker, we imaged their entry into mildly acidic compartments. We found that cells expressing the transmembrane receptor (TVA950) internalized the virus much faster than those expressing the GPI-anchored receptor isoform (TVA800). Surprisingly, TVA800 did not accelerate virus uptake compared to cells lacking the receptor. Subsequent steps of virus entry were visualized by incorporating a small viral content marker that was released into the cytosol as a result of fusion. EnvA-dependent fusion with TVA800-expressing cells occurred shortly after endocytosis and delivery into acidic endosomes, whereas fusion of viruses internalized through TVA950 was delayed. In the latter case, a relatively stable hemifusion-like intermediate preceded the fusion pore opening. The apparent size and stability of nascent fusion pores depended on the TVA isoforms and their expression levels, with TVA950 supporting more robust pores and a higher efficiency of infection compared to TVA800. These results demonstrate that surface receptor density and the intracellular trafficking pathway used are important determinants of efficient EnvA-mediated membrane fusion, and suggest that early fusion intermediates play a critical role in establishing low pH-dependent virus entry from within acidic endosomes.


Assuntos
Vírus da Leucose Aviária/fisiologia , Vírus do Sarcoma Aviário/fisiologia , Endocitose/fisiologia , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Proteínas Aviárias/metabolismo , Linhagem Celular , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Humanos , Microscopia de Fluorescência
15.
Adv Exp Med Biol ; 790: 128-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23884589

RESUMO

The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.


Assuntos
Retroviridae/fisiologia , Internalização do Vírus , Animais , Vírus da Leucose Aviária/fisiologia , Vírus do Sarcoma Aviário/fisiologia , HIV/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Receptores Virais/fisiologia , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/fisiologia
16.
Wei Sheng Wu Xue Bao ; 53(3): 299-305, 2013 Mar 04.
Artigo em Zh | MEDLINE | ID: mdl-23678577

RESUMO

OBJECTIVE: To prepare anti-fps mono-specific serum, and detect the fps antigen in tumors induced by acute transforming avian leukosis/sarcoma virus containing v-fps oncogene. METHODS: Two part of v-fps gene was amplified by RT-PCR using the Fu-J viral RNA as the template. Mono-specific serum was prepared by immuning Kunming white mouse with both two recombinant infusion proteins expressed by the prokaryotic expression system. Indirect immunofluorescent assay was used to detect fps antigen in tumor tissue suspension cells and CEF infected by sarcoma supernatant. Immunohistochemical method was used to detect fps antigen in tumor tissue. RESULTS: The mouse mono-specific serum was specific as it had no cross reaction with classical ALV-J strains. The result reveals that the tumor tissue suspension cells, the CEF infected by sarcoma supernatant, and the slice immunohistochemistry of the sarcoma showed positive results. CONCLUSION: The anti-fps mono-specific serum was prepared, and the detection method was established, which laid the foundation for the study of viral biological characteristics and mechanism of tumourgenesis of acute transforming avian leukosis/sarcoma virus containing v-fps oncogene.


Assuntos
Vírus da Leucose Aviária/imunologia , Vírus do Sarcoma Aviário/imunologia , Galinhas , Fibrossarcoma/imunologia , Doenças das Aves Domésticas/imunologia , Proteínas Proto-Oncogênicas c-fes/imunologia , Animais , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Leucose Aviária/imunologia , Leucose Aviária/virologia , Transformação Celular Neoplásica , Fibrossarcoma/virologia , Camundongos , Doenças das Aves Domésticas/virologia , Proteínas Proto-Oncogênicas c-fes/genética , RNA Viral/genética , Sarcoma Aviário/imunologia , Sarcoma Aviário/virologia , Organismos Livres de Patógenos Específicos
17.
J Biol Chem ; 286(29): 25710-8, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21622554

RESUMO

In the initial step of integration, retroviral integrase (IN) introduces precise nicks in the degenerate, short inverted repeats at the ends of linear viral DNA. The scissile phosphodiester bond is located immediately 3' of a highly conserved CA/GT dinucleotide, usually 2 bp from the ends. These nicks create new recessed 3'-OH viral DNA ends that are required for joining to host cell DNA. Previous studies have indicated that unpairing, "fraying," of the viral DNA ends by IN contributes to end recognition or catalysis. Here, we report that end fraying can be detected independently of catalysis with both avian sarcoma virus (ASV) and human immunodeficiency virus type 1 (HIV-1) IN proteins by use of fluorescence resonance energy transfer (FRET). The results were indicative of an IN-induced intramolecular conformational change in the viral DNA ends (cis FRET). Fraying activity is tightly coupled to the DNA binding capabilities of these enzymes, as follows: an inhibitor effective against both IN proteins was shown to block ASV IN DNA binding and end fraying, with similar dose responses; ASV IN substitutions that reduced DNA binding also reduced end fraying activity; and HIV-1 IN DNA binding and end fraying were both undetectable in the absence of a metal cofactor. Consistent with our previous results, end fraying is sequence-independent, suggesting that the DNA terminus per se is a major structural determinant for recognition. We conclude that frayed ends represent a functional intermediate in which DNA termini can be sampled for suitability for endonucleolytic processing.


Assuntos
Vírus do Sarcoma Aviário/enzimologia , Pareamento de Bases , DNA Viral/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , Vírus do Sarcoma Aviário/genética , Vírus do Sarcoma Aviário/metabolismo , Sequência de Bases , Domínio Catalítico , Coenzimas/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Transferência Ressonante de Energia de Fluorescência , Integrase de HIV/química , HIV-1/genética , HIV-1/metabolismo , Metais/metabolismo , Reprodutibilidade dos Testes
18.
J Exp Med ; 201(3): 320, 2005 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15756727

RESUMO

In 1910, Peyton Rous identified a transmissible avian tumor virus, a discovery that began the journey from tumor virus biology to tumor biology itself.


Assuntos
Vírus do Sarcoma Aviário , Neoplasias Experimentais , Vírus Oncogênicos , Academias e Institutos , Animais , História do Século XX , Humanos , Prêmio Nobel
19.
J Virol ; 84(9): 4204-11, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20147411

RESUMO

Retroviruses and retrovirus-derived vectors integrate nonrandomly into the genomes of host cells with specific preferences for transcribed genes, gene-rich regions, and CpG islands. However, the genomic features that influence the transcriptional activities of integrated retroviruses or retroviral vectors are poorly understood. We report here the cloning and characterization of avian sarcoma virus integration sites from chicken tumors. Growing progressively, dependent on high and stable expression of the transduced v-src oncogene, these tumors represent clonal expansions of cells bearing transcriptionally active replication-defective proviruses. Therefore, integration sites in our study distinguished genomic loci favorable for the expression of integrated retroviruses and gene transfer vectors. Analysis of integration sites from avian sarcoma virus-induced tumors showed strikingly nonrandom distribution, with proviruses found prevalently within or close to transcription units, particularly in genes broadly expressed in multiple tissues but not in tissue-specifically expressed genes. We infer that proviruses integrated in these genomic areas efficiently avoid transcriptional silencing and remain active for a long time during the growth of tumors. Defining the differences between unselected retroviral integration sites and sites selected for long-terminal-repeat-driven gene expression is relevant for retrovirus-mediated gene transfer and has ramifications for gene therapy.


Assuntos
Vírus do Sarcoma Aviário/fisiologia , Cromossomos/virologia , Provírus/fisiologia , Sarcoma Aviário/virologia , Integração Viral , Animais , Vírus do Sarcoma Aviário/genética , Galinhas , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Provírus/genética
20.
J Virol ; 84(9): 4725-36, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20164219

RESUMO

The release of retroviruses from cells requires ubiquitination of Gag and recruitment of cellular proteins involved in endosome sorting, including the ESCRT-III proteins and the Vps4 ATPase. In response to infection, cells have evolved an interferon-induced mechanism to block virus replication through expression of the interferon-stimulated gene 15 (ISG15), a dimer homologue of ubiquitin, which interferes with ubiquitin pathways in cells. Previously, it has been reported that ISG15 expression inhibited the E3 ubiquitin ligase, Nedd4, and prevented association of the ESCRT-I protein Tsg101 with human immunodeficiency virus type 1 (HIV-1) Gag. The budding of avian sarcoma leukosis virus and HIV-1 Gag virus-like particles containing L-domain mutations can be rescued by fusion to ESCRT proteins, which cause entry into the budding pathway beyond these early steps. The release of these fusions from cells was susceptible to inhibition by ISG15, indicating that there was a block late in the budding process. We now demonstrate that the Vps4 protein does not associate with the avian sarcoma leukosis virus or the HIV-1 budding complexes when ISG15 is expressed. This is caused by a loss in interaction between Vps4 with its coactivator protein LIP5 needed to promote the formation of the ESCRT-III-Vps4 double-hexamer complex required for membrane scission and virus release. The inability of LIP5 to interact with Vps4 is the probable result of ISG15 conjugation to the ESCRT-III protein, CHMP5, which regulates the availability of LIP5. Thus, there appear to be multiple levels of ISG15-induced inhibition acting at different stages of the virus release process.


Assuntos
Vírus do Sarcoma Aviário/imunologia , Vírus do Sarcoma Aviário/fisiologia , Citocinas/imunologia , HIV-1/imunologia , HIV-1/fisiologia , Interferons/imunologia , Ubiquitinas/imunologia , Liberação de Vírus , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fibroblastos/virologia , Humanos , ATPases Vacuolares Próton-Translocadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA