Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 988
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(3): 646-661.e4, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36696902

RESUMO

Viroids and viroid-like covalently closed circular (ccc) RNAs are minimal replicators that typically encode no proteins and hijack cellular enzymes for replication. The extent and diversity of viroid-like agents are poorly understood. We developed a computational pipeline to identify viroid-like cccRNAs and applied it to 5,131 metatranscriptomes and 1,344 plant transcriptomes. The search yielded 11,378 viroid-like cccRNAs spanning 4,409 species-level clusters, a 5-fold increase compared to the previously identified viroid-like elements. Within this diverse collection, we discovered numerous putative viroids, satellite RNAs, retrozymes, and ribozy-like viruses. Diverse ribozyme combinations and unusual ribozymes within the cccRNAs were identified. Self-cleaving ribozymes were identified in ambiviruses, some mito-like viruses and capsid-encoding satellite virus-like cccRNAs. The broad presence of viroid-like cccRNAs in diverse transcriptomes and ecosystems implies that their host range is far broader than currently known, and matches to CRISPR spacers suggest that some cccRNAs replicate in prokaryotes.


Assuntos
RNA Catalítico , Viroides , RNA Circular/metabolismo , Viroides/genética , Viroides/metabolismo , RNA Catalítico/genética , RNA Viral/genética , RNA Viral/metabolismo , Ecossistema , Doenças das Plantas
2.
Plant Cell ; 36(4): 1036-1055, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38252648

RESUMO

RNA viruses and viroids replicate with high mutation rates, forming quasispecies, population of variants centered around dominant sequences. The mechanisms governing quasispecies remain unclear. Plasmodesmata regulate viroid movement and were hypothesized to impact viroid quasispecies. Here, we sequenced the progeny of potato spindle tuber viroid intermediate (PSTVd-I) strain from mature guard cells lacking plasmodesmal connections and from in vitro-cultivated mesophyll cell protoplasts from systemic leaves of early-infected tomato (Solanum lycopersicum) plants. Remarkably, more variants accumulated in guard cells compared to whole leaves. Similarly, after extended cell culture, we observed more variants in cultivated mesophyll protoplasts. Coinfection and single-cell sequencing experiments demonstrated that the same plant cell can be infected multiple times by the same or different PSTVd sequences. To study the impact of initial population composition on PSTVd-I quasispecies, we conducted coinfections with PSTVd-I and variants. Two inoculum ratios (10:1 or 1:10) established quasispecies with or without PSTVd-I as the master sequence. In the absence of the master sequence, the percentage of novel variants initially increased. Moreover, a 1:1 PSTVd-I/variant RNA ratio resulted in PSTVd-I dominating (>50%), while the variants reached 20%. After PSTVd-I-only infection, the variants reached around 10%, while after variant-only infection, the variants were significantly more than 10%. These results emphasize the role of cell-to-cell communication and initial population composition in shaping PSTVd quasispecies.


Assuntos
Solanum lycopersicum , Viroides , Doenças das Plantas/genética , Quase-Espécies , RNA , RNA Viral/genética , Viroides/genética
3.
PLoS Pathog ; 20(4): e1012142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574111

RESUMO

RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.


Assuntos
Vírus de Plantas , Solanum tuberosum , Viroides , Viroides/genética , Solanum tuberosum/genética , RNA Viral/genética , RNA Viral/química , Quase-Espécies , Mutagênese , Doenças das Plantas , Vírus de Plantas/genética
4.
PLoS Pathog ; 19(10): e1011726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883353

RESUMO

Fungi are highly widespread and commonly colonize multicellular organisms that live in natural environments. Notably, studies on viruses infecting plant-associated fungi have revealed the interesting phenomenon of the cross-kingdom transmission of viruses and viroids from plants to fungi. This implies that fungi, in addition to absorbing water, nutrients, and other molecules from the host, can acquire intracellular parasites that reside in the host. These findings further suggest that fungi can serve as suitable alternative hosts for certain plant viruses and viroids. Given the frequent coinfection of fungi and viruses in humans/animals, the question of whether fungi can also acquire animal viruses and serve as their hosts is very intriguing. In fact, the transmission of viruses from insects to fungi has been observed. Furthermore, the common release of animal viruses into the extracellular space (viral shedding) could potentially facilitate their acquisition by fungi. Investigations of the cross-infection of animal viruses in fungi may provide new insights into the epidemiology of viral diseases in humans and animals.


Assuntos
Vírus de Insetos , Vírus de Plantas , Viroides , Animais , Humanos , Doenças das Plantas/microbiologia , Fungos , Plantas
5.
Plant Cell ; 34(10): 3543-3556, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35877068

RESUMO

The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import.


Assuntos
Solanum lycopersicum , Viroides , Transporte Ativo do Núcleo Celular , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Compostos Organofosforados , Doenças das Plantas/genética , RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Viroides/genética , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
6.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421275

RESUMO

Kolmioviridae is a family for negative-sense RNA viruses with circular, viroid-like genomes of about 1.5-1.7 kb that are maintained in mammals, amphibians, birds, fish, insects and reptiles. Deltaviruses, for instance, can cause severe hepatitis in humans. Kolmiovirids encode delta antigen (DAg) and replicate using host-cell DNA-directed RNA polymerase II and ribozymes encoded in their genome and antigenome. They require evolutionary unrelated helper viruses to provide envelopes and incorporate helper virus proteins for infectious particle formation. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Kolmioviridae, which is available at ictv.global/report/kolmioviridae.


Assuntos
Vírus Auxiliares , Viroides , Animais , Humanos , Evolução Biológica , Vírus de RNA de Sentido Negativo , RNA Polimerase II , Mamíferos
7.
PLoS Pathog ; 18(9): e1010850, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121876

RESUMO

Viroids, a fascinating group of plant pathogens, are subviral agents composed of single-stranded circular noncoding RNAs. It is well-known that nuclear-replicating viroids exploit host DNA-dependent RNA polymerase II (Pol II) activity for transcription from circular RNA genome to minus-strand intermediates, a classic example illustrating the intrinsic RNA-dependent RNA polymerase activity of Pol II. The mechanism for Pol II to accept single-stranded RNAs as templates remains poorly understood. Here, we reconstituted a robust in vitro transcription system and demonstrated that Pol II also accepts minus-strand viroid RNA template to generate plus-strand RNAs. Further, we purified the Pol II complex on RNA templates for nano-liquid chromatography-tandem mass spectrometry analysis and identified a remodeled Pol II missing Rpb4, Rpb5, Rpb6, Rpb7, and Rpb9, contrasting to the canonical 12-subunit Pol II or the 10-subunit Pol II core on DNA templates. Interestingly, the absence of Rpb9, which is responsible for Pol II fidelity, explains the higher mutation rate of viroids in comparison to cellular transcripts. This remodeled Pol II is active for transcription with the aid of TFIIIA-7ZF and appears not to require other canonical general transcription factors (such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIS), suggesting a distinct mechanism/machinery for viroid RNA-templated transcription. Transcription elongation factors, such as FACT complex, PAF1 complex, and SPT6, were also absent in the reconstituted transcription complex. Further analyses of the critical zinc finger domains in TFIIIA-7ZF revealed the first three zinc finger domains pivotal for RNA template binding. Collectively, our data illustrated a distinct organization of Pol II complex on viroid RNA templates, providing new insights into viroid replication, the evolution of transcription machinery, as well as the mechanism of RNA-templated transcription.


Assuntos
Fatores Genéricos de Transcrição , Viroides , DNA/metabolismo , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Circular/genética , RNA Polimerase Dependente de RNA/genética , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica , Viroides/genética , Viroides/metabolismo
8.
PLoS Pathog ; 18(12): e1011062, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574436

RESUMO

Tobacco mosaic virus movement protein (TMV MP) is essential for virus spread between cells. To accomplish its task, TMV MP binds viral RNA, interacts with components of the cytoskeleton, and increases the size exclusion limit (SEL) of plasmodesmata. Plasmodesmata are gated intercellular channels that allow passage of small molecules and macromolecules, including RNA and protein, between plant cells. Moreover, plasmodesmata are diverse and those connecting different cell types appear to have unique mechanisms to regulate macromolecular trafficking, which likely contributes to the establishment of distinct cell boundaries. Consequently, TMV MP might be competent to mediate RNA transport through some but not all plasmodesmal gates. Due to a lack of viral mutants defective for movement between specific cell types, the ability of TMV MP in this regard is incompletely understood. In contrast, a number of trafficking impaired Potato spindle tuber viroid (PSTVd) mutants have been identified. PSTVd is a systemically infectious non-coding RNA that nevertheless can perform all functions required for replication as well as cell-to-cell and systemic spread. Previous studies have shown that PSTVd employs different structure and sequence elements to move between diverse cell types in host plants, and mutants defective for transport between specific cell types have been identified. Therefore, PSTVd may serve as a tool to analyze the functions of MPs of viral and cellular origin. To probe the RNA transport activity of TMV MP, transgenic plants expressing the protein were inoculated with PSTVd mutants. Remarkably, TMV MP complemented a PSTVd mutant defective for mesophyll entry but could not support two mutants impaired for phloem entry, suggesting it fails to productively interface with plasmodesmata at the phloem boundary and that additional viral and host factors may be required. Consistent with this idea, TMV co-infection, but not the combination of MP and coat protein (CP) expression, was able to complement one of the phloem entry mutants. These observations suggest that phloem loading is a critical impediment to establishing systemic infection that could involve the entire ensemble of TMV proteins. They also demonstrate a novel strategy for analysis of MPs.


Assuntos
Solanum tuberosum , Vírus do Mosaico do Tabaco , Viroides , Vírus do Mosaico do Tabaco/metabolismo , Viroides/genética , Solanum tuberosum/metabolismo , Floema/genética , Floema/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana
9.
Arch Microbiol ; 206(5): 240, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698140

RESUMO

Hop stunt viroid (HSVd), a small, single stranded, circular, non-coding infectious RNA known to cause infection in various economically important crop plants. In the present investigation, a study was conducted in the southern part of Karnataka districts of India to detect the possible association of HSVd infection in mulberry plants. A total of 41 mulberry plants showing typical viroid-like symptoms along with asymptomatic samples were collected and screened using conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a specific set of HSVd-Fw/ HSVd-Re primers. Out of 41 samples, the study confirmed the presence of HSVd in six samples of mulberry collected from Ramanagara (1 sample), Chikkaballapur (3 samples) and Doddaballapura (2 samples) regions with an expected HSVd amplicon size of ∼ 290-300 nucleotides. The mechanical transmission of HSVd was also confirmed on cucumber (cv. Suyo) seedlings through bioassay, which was reconfirmed by RT-PCR. The amplicons were cloned, sequenced, and the representative nucleotide sequences were deposited in the NCBI GenBank. Subsequently, molecular phylogenetic analysis showed that HSVd mulberry isolates from this study were most closely related to grapevine isolates, indicating a common origin. On the other hand, it was shown to belong to a different group from mulberry isolates so far reported from Iran, Italy, Lebanon, and China. The secondary structure analysis of HSVd mulberry Indian isolates exhibited substitutions in the terminal left, pathogenicity, and variable regions compared to those of the Indian grapevine isolates. As far as this study is concerned, HSVd was detected exclusively in some mulberry plants with viral-like symptoms, but the pathogenesis and symptom expression needs to be further investigated to establish the relationship between HSVd and the disease symptoms in the mulberry plants.


Assuntos
Morus , Filogenia , Doenças das Plantas , Vírus de Plantas , Viroides , Morus/virologia , Viroides/genética , Viroides/isolamento & purificação , Viroides/classificação , Índia , Doenças das Plantas/virologia , RNA Viral/genética , Conformação de Ácido Nucleico
10.
Phytopathology ; 114(5): 930-954, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408117

RESUMO

Sustainable production of pome fruit crops is dependent upon having virus-free planting materials. The production and distribution of plants derived from virus- and viroid-negative sources is necessary not only to control pome fruit viral diseases but also for sustainable breeding activities, as well as the safe movement of plant materials across borders. With variable success rates, different in vitro-based techniques, including shoot tip culture, micrografting, thermotherapy, chemotherapy, and shoot tip cryotherapy, have been employed to eliminate viruses from pome fruits. Higher pathogen eradication efficiencies have been achieved by combining two or more of these techniques. An accurate diagnosis that confirms complete viral elimination is crucial for developing effective management strategies. In recent years, considerable efforts have resulted in new reliable and efficient virus detection methods. This comprehensive review documents the development and recent advances in biotechnological methods that produce healthy pome fruit plants. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Produtos Agrícolas , Frutas , Doenças das Plantas , Viroides , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Frutas/virologia , Produtos Agrícolas/virologia , Viroides/genética , Viroides/fisiologia , Vírus de Plantas/fisiologia , Biotecnologia/métodos , Prunus domestica/virologia
11.
Nucleic Acids Res ; 50(D1): D432-D438, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34751403

RESUMO

We introduce ViroidDB, a value-added database that attempts to collect all known viroid and viroid-like circular RNA sequences into a single resource. Spanning about 10 000 unique sequences, ViroidDB includes viroids, retroviroid-like elements, small circular satellite RNAs, ribozyviruses, and retrozymes. Each sequence's secondary structure, ribozyme content, and cluster membership are predicted via a custom pipeline optimized for handling circular RNAs. The data can be explored via a purpose-built user interface that features visualizations, multiple sequence alignments, and a portal for downloading bulk data. Users can browse the data by sequence type, taxon, or typo-tolerant search of metadata fields. The database is freely accessible at https://viroids.org.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Catalítico/genética , RNA Circular/genética , RNA Viral/genética , Software , Viroides/genética , Sequência de Bases , Internet , Metadados , Conformação de Ácido Nucleico , Doenças das Plantas/virologia , Plantas/virologia , RNA Catalítico/química , RNA Catalítico/classificação , RNA Catalítico/metabolismo , RNA Circular/química , RNA Circular/classificação , RNA Circular/metabolismo , RNA Viral/química , RNA Viral/classificação , RNA Viral/metabolismo , Alinhamento de Sequência , Viroides/classificação , Viroides/metabolismo
12.
Plant J ; 112(1): 284-293, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916236

RESUMO

Gene silencing for functional studies in plants has been largely facilitated by manipulating viral genomes with inserts from host genes to trigger virus-induced gene silencing (VIGS) against the corresponding mRNAs. However, viral genomes encode multiple proteins and can disrupt plant homeostasis by interfering with endogenous cell mechanisms. To try to circumvent this functional limitation, we have developed a silencing method based on the minimal autonomously-infectious nucleic acids currently known: viroids, which lack proven coding capability. The genome of Eggplant latent viroid, an asymptomatic viroid, was manipulated with insertions ranging between 21 and 42 nucleotides. Our results show that, although larger insertions might be tolerated, the maintenance of the secondary structure appears to be critical for viroid genome stability. Remarkably, these modified ELVd molecules are able to induce systemic infection promoting the silencing of target genes in eggplant. Inspired by the design of artificial microRNAs, we have developed a simple and standardized procedure to generate stable insertions into the ELVd genome capable of silencing a specific target gene. Analogously to VIGS, we have termed our approach viroid-induced gene silencing, and demonstrate that it is a promising tool for dissecting gene functions in eggplant.


Assuntos
MicroRNAs , Solanum melongena , Viroides , Inativação Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos/metabolismo , Doenças das Plantas/genética , Plantas/metabolismo , RNA Circular/genética , RNA Viral/genética , Solanum melongena/genética , Viroides/genética , Viroides/metabolismo
13.
New Phytol ; 239(1): 240-254, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148189

RESUMO

Chlorosis is frequently incited by viroids, small nonprotein-coding, circular RNAs replicating in nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae). Here, we investigated how chrysanthemum chlorotic mottle viroid (CChMVd, Avsunviroidae) colonizes, evolves and initiates disease. Progeny variants of natural and mutated CChMVd sequence variants inoculated in chrysanthemum plants were characterized, and plant responses were assessed by molecular assays. We showed that: chlorotic mottle induced by CChMVd reflects the spatial distribution and evolutionary behaviour in the infected host of pathogenic (containing a UUUC tetranucleotide) and nonpathogenic (lacking such a pathogenic determinant) variants; and RNA silencing is involved in the initiation of the chlorosis in symptomatic leaf sectors through a viroid-derived small RNA containing the pathogenic determinant that directs AGO1-mediated cleavage of the mRNA encoding the chloroplastic transketolase. This study provides the first evidence that colonization of leaf tissues by CChMVd is characterized by segregating variant populations differing in pathogenicity and with the ability to colonize leaf sectors (bottlenecks) and exclude other variants (superinfection exclusion). Importantly, no specific pathogenic viroid variants were found in the chlorotic spots caused by chrysanthemum stunt viroid (Pospiviroidae), thus establishing a clear distinction on how members of the two viroid families trigger chlorosis in the same host.


Assuntos
Chrysanthemum , Viroides , Viroides/genética , Interferência de RNA , Doenças das Plantas , Chrysanthemum/genética , RNA Mensageiro , RNA Viral/genética
14.
Plant Cell Environ ; 46(9): 2909-2927, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37378473

RESUMO

Viroids are circular RNAs of minimal complexity compelled to subvert plant-regulatory networks to accomplish their infectious process. Studies focused on the response to viroid-infection have mostly addressed specific regulatory levels and considered specifics infection-times. Thus, much remains to be done to understand the temporal evolution and complex nature of viroid-host interactions. Here we present an integrative analysis of the temporal evolution of the genome-wide alterations in cucumber plants infected with hop stunt viroid (HSVd) by integrating differential host transcriptome, sRNAnome and methylome. Our results support that HSVd promotes the redesign of the cucumber regulatory-pathways predominantly affecting specific regulatory layers at different infection-phases. The initial response was characterised by a reconfiguration of the host-transcriptome by differential exon-usage, followed by a progressive transcriptional downregulation modulated by epigenetic changes. Regarding endogenous small RNAs, the alterations were limited and mainly occurred at the late stage. Significant host-alterations were predominantly related to the downregulation of transcripts involved in plant-defence mechanisms, the restriction of pathogen-movement and the systemic spreading of defence signals. We expect that these data constituting the first comprehensive temporal-map of the plant-regulatory alterations associated with HSVd infection could contribute to elucidate the molecular basis of the yet poorly known host-response to viroid-induced pathogenesis.


Assuntos
Cucumis sativus , Vírus de Plantas , Viroides , Viroides/genética , Multiômica , Transcriptoma , Cucumis sativus/genética , Doenças das Plantas
15.
J Exp Bot ; 74(5): 1564-1578, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36111947

RESUMO

Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but instead hypersusceptible to the viroid. A combination of phenotypic, molecular, and metabolic analyses of amiRNA-expressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism, or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus demonstrating that down-regulation of SlSGT1 was responsible for the viroid-hypersusceptibility phenotype. Our results highlight the role of sterol glycosyltransferases in proper plant development and indicate that the imbalance of sterol glycosylation levels favors viroid infection, most likely by facilitating viroid movement.


Assuntos
MicroRNAs , Solanum lycopersicum , Solanum tuberosum , Viroides , Viroides/genética , Solanum lycopersicum/genética , Regulação para Baixo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , MicroRNAs/genética , Doenças das Plantas/genética , Solanum tuberosum/genética , RNA Viral/genética
16.
Arch Virol ; 168(5): 131, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022484

RESUMO

Dahlias that are naturally infected with potato spindle tuber viroid (PSTVd) do not exhibit symptoms. Therefore, if PSTVd isolates that are highly pathogenic in tomato plants infect dahlias, there is a significant risk of PSTVd infecting other plants via dahlias. In this study, we found that almost all highly pathogenic isolates were able to infect dahlia plants, but the symptoms varied depending on the cultivar. When mixed inocula composed of dahlia isolates and highly pathogenic isolates were tested, the dahlia isolates dominantly infected dahlia plants; however, the highly pathogenic isolates also coinfected plants. Our results also suggest that seed or pollen transmission from infected dahlia plants does not occur.


Assuntos
Dahlia , Doenças das Plantas , Viroides , Dahlia/virologia , Doenças das Plantas/virologia , Sementes , Viroides/genética
17.
Virus Genes ; 59(2): 244-253, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745286

RESUMO

Seven viroid species and one putative viroid species have been reported to infect grapevine namely, hop stunt viroid (HSVd), grapevine yellow speckle viroid 1 (GYSVd-1), grapevine yellow speckle viroid 2 (GYSVd-2), Australian grapevine viroid (AGVd), Japanese grapevine viroid (JGVd), grapevine latent viroid (GLVd), and citrus exocortis viroid (CEVd), as well as a grapevine hammerhead viroid-like RNA (GHVd), so far. In this study, RNA sequence (RNA-Seq) data, from 229 Vitis accessions from the field-maintained vineyard of the South African Vitis germplasm collection, were analysed to determine the diversity of the viroids present. Five of the seven known grapevine-infecting viroids and one putative grapevine-infecting viroid species were very commonly found, with 214 of the 229 samples containing at least one viroid species. HSVd, GYSVd-1, GYSVd-2, AGVd, and JGVd, as well as GHVd, were identified in the RNA-Seq data of the samples and confirmed using RT-PCR and Sanger sequencing. The HSVd sequences indicated the presence of two variants, with one showing multiple nucleotide insertions. AGVd and GYSVd-2 did not display significant sequence diversity, confirming past international studies. GYSVd-1 occurs as four major variants worldwide and representatives of all four variants were identified in this vineyard. This is the first report on the diversity of viroids infecting grapevine in South Africa and the first report of JGVd outside of Japan and GHVd in South Africa. Further studies are needed to fully assess the population and to identify potentially new viroid species.


Assuntos
Viroides , Vitis , Viroides/genética , Vitis/genética , África do Sul , Austrália , RNA
18.
Phytopathology ; 113(3): 559-566, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346373

RESUMO

Avocado is one of the world's fastest growing tropical fruit industries, and the pathogen avocado sunblotch viroid (ASBVd) is a major threat to both production and access to international export markets. ASBVd is seed transmissible, with infection possible via either the male (pollen) or female gametes. Surveillance for ASBVd across commercial orchards is a major logistical task, particularly when aiming to meet the stringent standards of evidence required for a declaration of pest freedom. As with many fruit crops, insect pollination is important for high avocado yields, and honey bee (Apis mellifera) hives are typically moved into orchards for paid pollination services. Exploiting the foraging behavior of honey bees can provide a complementary strategy to traditional surveillance methods. High-throughput sequencing (HTS) of bee samples for plant viruses shows promise, but this surveillance method has not yet been tested for viroids or in a targeted plant biosecurity context. Here, we tested samples of bees and pollen collected from pollination hives in two ASBVd orchard locations, one in Australia, where only four trees in a block were known to be infected, and a second in South Africa, where the estimated incidence of infection was 10%. Using real-time RT-PCR and HTS (total RNA-seq and small RNA-seq), we demonstrated that ASBVd can be confidently detected in bees and pollen samples from hives within 100 m of infected trees. The potential for using this approach in ASBVd surveillance for improved orchard management and supporting market access is discussed.


Assuntos
Persea , Vírus de Plantas , Viroides , Abelhas , Animais , Doenças das Plantas/prevenção & controle , Viroides/genética , Polinização
19.
Phytopathology ; 113(4): 616-625, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36441873

RESUMO

One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.


Assuntos
RNA de Cadeia Dupla , Viroides , RNA Interferente Pequeno/genética , Interferência de RNA , Antivirais , Doenças das Plantas , Plantas/genética , Viroides/genética , Transgenes , Mecanismos de Defesa
20.
Plant Dis ; 107(4): 1022-1026, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36167515

RESUMO

Malabar spinach plants (Basella alba, Basellaceae) with leaves exhibiting symptoms of mosaic, rugosity, and malformation were found in a community garden on Oahu, HI in 2018. Preliminary studies using enzyme-linked immunosorbent assay and reverse-transcription (RT)-PCR identified Basella rugose mosaic virus (BaRMV) in symptomatic plants. However, nucleotide sequence analysis of RT-PCR amplicons indicated that additional potyviruses were also present in the symptomatic Malabar spinach. High-throughput sequencing (HTS) analysis was conducted on ribosomal RNA-depleted composite RNA samples of potyvirus-positive plants from three locations. Assembled contigs shared sequences similar to BaRMV, chilli veinal mottle virus (ChiVMV), Alternanthera mosaic virus (AltMV), Basella alba endornavirus (BaEV), broad bean wilt virus 2 (BBWV2), and Iresine viroid 1. Virus- and viroid-specific primers were designed based on HTS sequencing results and used in RT-PCR and Sanger sequencing to confirm the presence of these viruses and the viroid. We tested 63 additional samples from six community gardens for a survey of viruses in Malabar spinach and found that 21 of them were positive for BaRMV, 57 for ChiVMV, 21 for AltMV, 19 for BaEV, and 14 for BBWV2. This is the first characterization of the virome from B. alba.


Assuntos
Potyvirus , Viroides , Havaí , Potyvirus/genética , Primers do DNA , Ensaio de Imunoadsorção Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA