Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 202: 105967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879344

RESUMO

Coumarin is a natural product known for its diverse biological activities. While its antifungal properties in agricultural chemistry have been extensively studied, there is limited research on its antibacterial potential. In this study, we developed several novel coumarin derivatives by combining coumarin with pyridinium salt through molecular hybridization and chemical synthesis. Our findings reveal that most of these derivatives exhibit promising antibacterial activity. Among them, derivative A25 has been identified as the most effective compound based on three-dimensional quantitative structure-activity relationships. It demonstrates significant in vitro and in vivo activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc), and Xanthomonas campestris pv. citri (Xac), outperforming the commercially available thiediazole copper. Initial investigations into its mechanism of action suggest that A25 disrupts the cell membranes of Xoc and Xoo, thereby inhibiting bacterial growth. Additionally, A25 enhances the activity of defense enzymes in rice and modulates the expression of proteins related to the pyruvate metabolism pathway. This dual action contributes to rice's resistance against bacterial infestation. We anticipate that this study will serve as a foundation for the development of coumarin-based bactericides.


Assuntos
Antibacterianos , Cumarínicos , Testes de Sensibilidade Microbiana , Oryza , Xanthomonas , Cumarínicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Xanthomonas/efeitos dos fármacos , Oryza/microbiologia , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Compostos de Piridínio/síntese química , Xanthomonas campestris/efeitos dos fármacos , Desenho de Fármacos , Sais/farmacologia , Sais/química , Relação Estrutura-Atividade
2.
Plant Dis ; 108(6): 1418-1424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199962

RESUMO

Nonnative plant infestations provide unique opportunities to investigate pathogen emergence with evolutionarily recent plant introduction events. The widespread distribution of invasive plants and their proximity to genetically related crops highlights the risks of nonnative plants acting as ancillary hosts and fostering microbial recombination and pathogen selection. Garlic mustard (Alliaria petiolata) is a widespread, nonnative cruciferous weed that grows throughout North America and along the forested edges of diverse agricultural fields. The recent identification of a novel Xanthomonas campestris pv. incanae strain isolated from a diseased A. petiolata population led to the current investigation of the distribution and diversity of X. campestris isolates from naturally infected A. petiolata. A total of 14 diseased A. petiolata sites were sampled across three states, leading to the identification of diverse X. campestris pathotypes and genotypes. Pathogenicity assays and multilocus sequence analyses identified pathogenic X. c. pv. incanae and X. c. pv. barbareae strains collected from disparate A. petiolata populations. Moreover, independently collected X. c. pv. incanae strains demonstrated a broad cruciferous host range by infecting cabbage (Brassica oleracea var. capitata), garden stock (Matthiola incana), and the cover crop yellow mustard (Guillenia flavescens). This study highlights the genetic variability and host potential of natural X. campestris populations and the potential risks to Brassica crops via widespread, dense garlic mustard reservoirs.


Assuntos
Doenças das Plantas , Xanthomonas campestris , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidade , Xanthomonas campestris/efeitos dos fármacos , Doenças das Plantas/microbiologia , Brassicaceae/microbiologia , Filogenia , Tipagem de Sequências Multilocus , Genótipo
3.
Int Microbiol ; 24(3): 399-413, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33956240

RESUMO

Bdellovibrios are predatory bacteria that invade other live Gram-negative bacterial cells for growth and reproduction. They have recently been considered as potential living antibiotics and biocontrol agents. In this study, the predatory activity and biocontrol potency of Bdellovibrio bacteriovorus strain SOIR-1 against Pantoea sp. strain BCCS and Xanthomonas campestris, two exo-biopolymer-producing phytopathogens, was evaluated. Plaque formation assays and lysis analysis in the broth co-cultures were used for the in vitro evaluation of bacteriolytic activity of strain SOIR-1. The in vivo biocontrol potential of strain SOIR-1 was evaluated by pathogenicity tests on the onion bulbs and potato tuber slices. The phytopathogens were also recovered from the infected plant tissues and confirmed using biochemical tests and PCR-based 16S rRNA gene sequence analysis. Typical bdellovibrios plaques were developed on the lawn cultures of Pantoea sp. BCCS and X. campestris. The killing rate of strain SOIR-1 toward Pantoea sp. BCCS and X. campestris was 84.3% and 76.3%, respectively. Exo-biopolymers attenuated the predation efficiency of strain SOIR-1 up to 10.2-18.2% (Pantoea sp. BCCS) and 12.2-17.3% (X. campestris). The strain SOIR-1 significantly reduced rotting symptoms in the onion bulbs caused by Pantoea sp. BCCS (69.0%) and potato tuber slices caused by X. campestris (73.1%). Although more field assessments are necessary, strain SOIR-1 has the preliminary potential as a biocontrol agent against phytopathogenic Pantoea sp. BCCS and X. campestris, especially in postharvest storage. Due to the particular physicochemical properties of evaluated exo-biopolymers, they can be used in the designing encapsulation systems for delivery of bdellovibrios.


Assuntos
Bdellovibrio bacteriovorus/fisiologia , Bdellovibrio bacteriovorus/patogenicidade , Agentes de Controle Biológico/farmacologia , Pantoea/efeitos dos fármacos , Pantoea/fisiologia , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/fisiologia , Antibiose , Biopolímeros/fisiologia , Técnicas de Cocultura/métodos , DNA Bacteriano , Interações Microbianas , RNA Ribossômico 16S
4.
Bioorg Med Chem Lett ; 30(17): 127368, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738986

RESUMO

1,2,4-Triazole is a very important scaffold in medicinal chemistry due to the wide spectrum of biological activities and mainly antifungal activity of 1,2,4-triazole derivatives. The main mechanism of antifungal action of the latter is inhibition of 14-alpha-demethylase enzyme (CYP51). The current study presents synthesis and evaluation of eight triazole derivatives for their antimicrobial activity. Docking studies to elucidate the mechanism of action were also performed. The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. All tested compounds showed good antibacterial activity with MIC and MBC values ranging from 0.0002 to 0.0069 mM. Compound 2 h appeared to be the most active among all tested with MIC at 0.0002-0.0033 mM and MBC at 0.0004-0.0033 mM followed by compounds 2f and 2g. The most sensitive bacterium appeared to be Xanthomonas campestris while Erwinia amylovora was the most resistant. The evaluation of antifungal activity revealed that all compounds showed good antifungal activity with MIC values ranging from 0.02 mM to 0.52 mM and MFC from 0.03 mM to 0.52 mM better than reference drugs ketoconazole (MIC and MFC values at 0.28-1.88 mM and 0.38 mM to 2.82 mM respectively) and bifonazole (MIC and MFC values at 0.32-0.64 mM and 0.64-0.81 mM). The best antifungal activity is displayed by compound 2 h with MIC at 0.02-0.04 mM and MFC at 0.03-0.06 mM while compound 2a showed the lowest activity. The results showed that these compounds could be lead compounds in search for new potent antimicrobial agents. Docking studies confirmed experimental results.


Assuntos
Anti-Infecciosos/síntese química , Triazóis/química , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Sítios de Ligação , DNA Girase/química , DNA Girase/metabolismo , Desenho de Fármacos , Erwinia amylovora/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/farmacologia , Xanthomonas campestris/efeitos dos fármacos
5.
Mar Drugs ; 18(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979232

RESUMO

Microbial co-cultivation is employed for awakening silent biosynthetic gene clusters (BGCs) to enhance chemical diversity. However, the selection of appropriate partners for co-cultivation remains a challenge. Furthermore, competitive interactions involving the suppression of BGCs or upregulation of known, functional metabolite(s) during co-cultivation efforts is also common. Herein, we performed an alternative approach for targeted selection of the best co-cultivation pair. Eight marine sediment-derived fungi were classified as strong or weak, based on their anti-phytopathogenic potency. The fungi were co-cultured systematically and analyzed for their chemical profiles and anti-phytopathogenic activity. Based on enhanced bioactivity and a significantly different metabolite profile including the appearance of a co-culture specific cluster, the co-culture of Plenodomus influorescens (strong) and Pyrenochaeta nobilis (weak) was prioritized for chemical investigation. Large-scale co-cultivation resulted in isolation of five polyketide type compounds: two 12-membered macrolides, dendrodolide E (1) and its new analog dendrodolide N (2), as well as two rare azaphilones spiciferinone (3) and its new analog 8a-hydroxy-spiciferinone (4). A well-known bis-naphtho-γ-pyrone type mycotoxin, cephalochromin (5), whose production was specifically enhanced in the co-culture, was also isolated. Chemical structures of compounds 1-5 were elucidated by NMR, HRMS and [] analyses. Compound 5 showed the strongest anti-phytopathogenic activity against Xanthomonas campestris and Phytophthora infestans with IC50 values of 0.9 and 1.7 µg/mL, respectively.


Assuntos
Agroquímicos/metabolismo , Organismos Aquáticos/metabolismo , Produtos Biológicos/metabolismo , Fungos/metabolismo , Microbiologia Industrial/métodos , Agroquímicos/química , Agroquímicos/isolamento & purificação , Agroquímicos/farmacologia , Organismos Aquáticos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Técnicas de Cocultura/métodos , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Metabolômica , Phytophthora infestans/efeitos dos fármacos , Policetídeos/isolamento & purificação , Policetídeos/metabolismo , Projetos de Pesquisa , Xanthomonas campestris/efeitos dos fármacos
6.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106569

RESUMO

In the present work, tenoxicam (H2Ten) reacted with Mn(II), Co(II), Ni(II), Cu(II) and Zn (II) ions in the presence of 1.10-phenthroline (Phen), forming new mixed ligand metal complexes. The properties of the formed complexes were depicted by elemental analyses, infrared, electronic spectra, proton nuclear magnetic resonance (1H NMR), mass spectrometry, thermogravimetric (TGA) and differential thermogravimetric (DTG) analysis, molar conductance and magnetic moment. IR spectra demonstrated that H2Ten acted as a neutral bidentate ligand, coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety, and Phen through the nitrogen atoms. Kinetic thermodynamics parameters activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*), Gibbs, free energy (ΔG*) associated to the complexes have been evaluated. Antibacterial screening of the compounds was carried out in vitro against Clavibacter michiganensis, Xanthomonas campestris and Bacillus megaterium. Antifungal activity was performed in vitro against Monilinia fructicola, Penicillium digitatum and Colletotrichum acutatum. The possible phytotoxic effect of the studied compounds was also investigated on Solanum lycopersicum (tomatoes) and Lepidium sativum (garden cress) seeds. The anticancer activity was screened against cell cultures of HCT-116 (human colorectal carcinoma), HepG2 (human hepatocellular carcinoma) and MCF-7 (human breast adenocarcinoma).


Assuntos
Antibacterianos/química , Antifúngicos/química , Complexos de Coordenação/química , Piroxicam/análogos & derivados , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bacillus megaterium/efeitos dos fármacos , Cobalto/química , Complexos de Coordenação/farmacologia , Cobre/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Manganês/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Níquel/química , Piroxicam/química , Piroxicam/farmacologia , Bases de Schiff , Espectrofotometria Infravermelho , Termodinâmica , Xanthomonas campestris/efeitos dos fármacos , Zinco/química
7.
Phytopathology ; 109(7): 1246-1256, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30920356

RESUMO

Glucosinolates (GSLs) are secondary metabolites present in Brassicaceae species implicated in their defense against plant pathogens. When a pathogen causes tissue damage, the enzyme myrosinase hydrolyzes GSLs into diverse products that exhibit antimicrobial activity against a wide range of bacteria and fungi in vitro. It was demonstrated that modulation of GSL content in vivo affects plant resistance to infection by pathogens in Arabidopsis. However, the roles of specific metabolites and how they interact with pathogens are poorly understood in Brassica crops. We previously developed a set of populations of Brassica oleracea var. acephala L. (kale) differing in content of three GSLs: the aliphatics sinigrin (2-propenyl [SIN]) and glucoiberin (3-methylsulphinylpropyl [GIB]) and the indolic glucobrassicin (3-indolylmethyl [GBS]). These populations can be used to study the effects of major GSLs in kale, with the advantage that genotypes within each selection have the same genetic background. This research aimed to explore the role of SIN, GIB, and GBS in the defense of kale against the necrotrophic fungus Sclerotinia sclerotiorum and the bacterium Xanthomonas campestris pv. campestris. Results showed that increasing the amount of a particular GSL did not always result in disease resistance. The effects of GSLs were apparently dependent on the pathogen and the type of GSL. Thus, the aliphatic SIN was inhibitory to infection by S. sclerotiorum and the indolic GBS was inhibitory to infection by X. campestris pv. campestris. Other factors, including the quantity and proportion of other metabolites modified during the pathogen infection process, could also modulate the degree of inhibition to the pathogen.


Assuntos
Ascomicetos , Brassica , Xanthomonas campestris , Ascomicetos/efeitos dos fármacos , Brassica/metabolismo , Glucosinolatos/biossíntese , Doenças das Plantas/microbiologia , Xanthomonas campestris/efeitos dos fármacos
8.
Pestic Biochem Physiol ; 156: 63-71, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027582

RESUMO

Phenazine-1-carboxylic acid (PCA), a secondary metabolite produced by Pseudomonas spp., exhibits a high inhibitory effect in Xanthomonas oryzae pv. oryzae (Xoo), but less inhibitory effect in Xanthomonas oryzae pv. oryzicola (Xoc), and almost no inhibitory effect in Xanthomonas campestris pv. campestris (Xcc). In our previous study, reactive oxygen species (ROS) scavenging system was reported to be involved in PCA tolerance in Xanthomonas spp. However, the PCA tolerance mechanism of Xanthomonas spp. is unclear. In the current study, we constructed a Tn5-based transposon mutant library in Xcc and four highly PCA-sensitive insertion mutants were obtained. TAIL-PCR further confirmed that the Tn5 transposon was inserted in the cytochrome c maturation (CCM) system (XC_1893, XC_1897) of these mutants. Disruption of the CCM system significantly decreased the growth, motility and tolerance of Xcc to PCA and other phenazines, such as phenazine and 1-OH-phenazine. The CCM system is responsible for the covalent attachment of the apocytochrome and heme. Disruption of the transmembrane thioredox protein (Dsb) pathway (XC_0531), an essential process for the formation of mature apocytochrome, also exhibited a decreased tolerance to PCA, suggesting that the defect of cytochrome c caused decreased tolerance of Xcc to PCA. Meanwhile, disruption of the CCM system or Dsb pathway interfered with the functions of cytochrome c proteins, causing an increased sensitivity to H2O2. Collectively, we concluded that the CCM system and Dsb pathway, regulate the tolerance of Xcc to phenazines by influencing the functions of cytochrome c. Therefore, these results provide important references for revealing the action mechanism of PCA in Xanthomonas spp.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos c/metabolismo , Fenazinas/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/metabolismo , Mutação/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Pestic Biochem Physiol ; 160: 40-48, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519256

RESUMO

Xanthomonas campestris pv.campestris (Xcc) is the causative agent of black rot, a disease that causes serious damage to plants from Brassicaceae family. However, there are no chemicals or biological agent commercially registered for the control of this disease. Thus, this study aimed to evaluate the antimicrobial activity and chemical composition of Lippia gracilis essential oils (EOs) on Xcc aiming its use as effective biological control. We also investigated the effect of EOs on the integrity of the bacterial cytoplasmic membrane. Chemical analysis by GC/MS showed that the major compounds of the seven EOs of L. gracilis are thymol or carvacrol. The seven genotypes showed inhibition of bacterial growth with MIC from 700 µg.ml-1 to 1000 µg.ml-1, with the genotype LGRA-106 (rich in Thymol) with higher antimicrobial activity. The MIC for thymol and carvacrol were 250 µg.ml-1. After exposure to LGRA-106 EO (2×, 1×, 1/2×, 1/4×, and 1/8 x MIC for 5 min, it was observed a decreased cell viability and increased pI fluorescence, which indicates damage to the cytoplasmic cell membrane. This study demonstrates that L. gracilis EOs have antimicrobial activity and have a potential to be used in the control of black rot. Furthermore this antimicrobial activity is due, at least in part, to bacterial cytoplasmic membrane damage.


Assuntos
Antibacterianos/farmacologia , Lippia/química , Óleos Voláteis/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana
10.
Pak J Pharm Sci ; 32(3): 1069-1080, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31278722

RESUMO

This research investigates the synthesis and characterization of gold nanoparticles from Periploca hydaspidis and their antimicrobial and anti oxidant activity. The synthesis of AuNPs was confirmed by UV-Vis spectrophotometer and structure by a high resolution atomic force microscope. X-ray diffraction and Fourier transformed infrared spectroscopy was used to study the crystallite size and different functional groups. DPPH radical scavenging activity and disc diffusion protocol was applied for the determination of antioxidant and antimicrobial activity. A ratio of 1:8 of 1mM AuCl3 solutions with plant boiled extract used for synthesis of gold nano-particles. The formation of the gold nano-particles was determined by the color change from yellow to dark purple which were confirmed by UV-Vis spectrophotometer. Gold nano-particles were stable between 24°C and 39°C, mM concentration of the salt and neutral pH. The groups responsible for the synthesis of gold nano-paricles were Alkenes and aliphatic amines. The AuNP were cubic in nature and the nanocrystallite size was 6.99nm. Gold nano-particles revealed good antioxidant activity and controlled the growth of K. pnemoniae, E. coli, X. compestris, C. albicans and P. chrysogenum.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Periploca/química , Anti-Infecciosos/síntese química , Antioxidantes/síntese química , Candida albicans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Ouro/química , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Tamanho da Partícula , Extratos Vegetais/química , Plantas Medicinais/química , Espectrofotometria Ultravioleta , Difração de Raios X , Xanthomonas campestris/efeitos dos fármacos
11.
J Basic Microbiol ; 58(5): 403-413, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29504631

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers. Here, one EZ-Tn5 transposon mutant of Xcc, altered in bacterial attachment, was isolated. Further analysis revealed that the transposon was inserted in the wxcX gene (encodes a hypothetical protein) of the transposon mutant. Sequence analysis revealed that WxcX is highly conserved in Xanthomonas, but none has been characterized. In this study, it was indicated that mutation of wxcX resulted in enhanced bacterial attachment, reduced virulence on the host cabbage, and increased sensitivity to sodium dodecyl sulfate. The affected phenotypes of the wxcX mutant could be complemented to wild-type levels by the intact wxcX gene. Site-directed mutagenesis revealed that E408 and E411 are critical amino acid residues for WxcX function in bacterial attachment. Taken together, our results demonstrate the roles of wxcX in attachment, virulence, and tolerance to sodium dodecyl sulfate in Xanthomonas for the first time.


Assuntos
Adesinas Bacterianas/genética , DNA Bacteriano/genética , Genes Bacterianos/genética , Fatores de Virulência/genética , Xanthomonas campestris/genética , Proteínas de Bactérias/genética , Brassica/microbiologia , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Conformação Proteica , Análise de Sequência de Proteína , Homologia de Sequência , Dodecilsulfato de Sódio/farmacologia , Virulência/genética , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/patogenicidade
12.
Curr Microbiol ; 74(12): 1373-1381, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28821943

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is the phytopathogen that causes black rot disease in cruciferous plants. The XCC2366 gene product is annotated as a protein belonging to the TetR family of transcriptional regulators. In this study, we evaluated the function and expression of the XCC2366 gene. Mutational analysis demonstrated that XCC2366 is involved in the resistance to acriflavin and is necessary for virulence in Xcc. In addition, the XCC2366 transcription initiation site was mapped at nucleotide A, 63 nucleotide upstream of the XCC2366 translation start codon. Furthermore, transcriptional analysis revealed that the expression of XCC2366 is induced in the presence of acriflavin. Reporter assay also showed that XCC2366 regulates its own expression under acriflavin-supplemented condition. To the best of our knowledge, acriflavin resistance-related gene in the crucifer pathogen Xcc was characterized for the first time.


Assuntos
Acriflavina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Fatores de Transcrição/genética , Fatores de Virulência/genética , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/patogenicidade , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Sítio de Iniciação de Transcrição , Virulência , Xanthomonas campestris/genética
13.
J Environ Sci Health B ; 51(12): 832-839, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27494458

RESUMO

ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.


Assuntos
Actinobacteria/efeitos dos fármacos , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Pseudomonas/efeitos dos fármacos , Xanthomonas campestris/efeitos dos fármacos , Actinobacteria/patogenicidade , Monoterpenos Acíclicos , Agaricales , Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/toxicidade , Origanum/química , Doenças das Plantas/microbiologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Pseudomonas/patogenicidade , Terpenos/química , Terpenos/farmacologia , Verduras/microbiologia , Xanthomonas campestris/patogenicidade
14.
Mol Microbiol ; 92(3): 557-69, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24601980

RESUMO

Bacteria co-ordinate their social behaviour in a density-dependent manner by production of diffusible signal molecules by a process known as quorum sensing (QS). It is generally assumed that in homogenous environments and at high cell density, QS synchronizes cells in the population to perform collective social tasks in unison which maximize the benefit at the inclusive fitness of individuals. However, evolutionary theory predicts that maintaining phenotypic heterogeneity in performing social tasks is advantageous as it can serve as a bet-hedging survival strategy. Using Pseudomonas syringae and Xanthomonas campestris as model organisms, which use two diverse classes of QS signals, we show that two distinct subpopulations of QS-responsive and non-responsive cells exist in the QS-activated population. Addition of excess exogenous QS signal does not significantly alter the distribution of QS-responsive and non-responsive cells in the population. We further show that progeny of cells derived from these subpopulations also exhibited heterogeneous distribution patterns similar to their respective parental strains. Overall, these results support the model that bacteria maintain QS-responsive and non-responsive subpopulations at high cell densities in a bet-hedging strategy to simultaneously perform functions that are both positively and negatively regulated by QS to improve their fitness in fluctuating environments.


Assuntos
Pseudomonas syringae/fisiologia , Percepção de Quorum , Xanthomonas campestris/fisiologia , Acil-Butirolactonas/metabolismo , Ácidos Graxos/metabolismo , Fenótipo , Pseudomonas syringae/efeitos dos fármacos , Xanthomonas campestris/efeitos dos fármacos
15.
Appl Environ Microbiol ; 81(1): 432-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25362058

RESUMO

Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Brassica/química , Glucosinolatos/farmacologia , Extratos Vegetais/farmacologia , Alternaria/efeitos dos fármacos , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Ascomicetos/efeitos dos fármacos , Brassica/microbiologia , Glucosinolatos/isolamento & purificação , Glucosinolatos/metabolismo , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Pseudomonas syringae/efeitos dos fármacos , Xanthomonas campestris/efeitos dos fármacos
16.
Can J Microbiol ; 61(5): 343-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25825971

RESUMO

The exposure of Xanthomonas campestris pv. campestris to sublethal concentrations of a sodium hypochlorite (NaOCl) solution induced the expression of genes that encode peroxide scavenging enzymes within the OxyR and OhrR regulons. Sensitivity testing in various X. campestris mutants indicated that oxyR, katA, katG, ahpC, and ohr contributed to protection against NaOCl killing. The pretreatment of X. campestris cultures with oxidants, such as hydrogen peroxide (H2O2), t-butyl hydroperoxide, and the superoxide generator menadione, protected the bacteria from lethal concentrations of NaOCl in an OxyR-dependent manner. Treating the bacteria with a low concentration of NaOCl resulted in the adaptive protection from NaOCl killing and also provided cross-protection from H2O2 killing. Taken together, the results suggest that the toxicity of NaOCl is partially mediated by the generation of peroxides and other reactive oxygen species that are removed by primary peroxide scavenging enzymes, such as catalases and AhpC, as a part of an overall strategy that protects the bacteria from the lethal effects of NaOCl.


Assuntos
Peróxidos/metabolismo , Regulon , Hipoclorito de Sódio/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Catalase/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
17.
Microbiology (Reading) ; 160(Pt 2): 458-466, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24385479

RESUMO

Copper (Cu)-based biocides are currently used as control measures for both fungal and bacterial diseases in agricultural fields. In this communication, we show that exposure of the bacterial plant pathogen Xanthomonas campestris to nonlethal concentrations of Cu(2+) ions (75 µM) enhanced expression of genes in OxyR, OhrR and IscR regulons. High levels of catalase, Ohr peroxidase and superoxide dismutase diminished Cu(2+)-induced gene expression, suggesting that the production of hydrogen peroxide (H2O2) and organic hydroperoxides is responsible for Cu(2+)-induced gene expression. Despite high expression of antioxidant genes, the CuCl2-treated cells were more susceptible to H2O2 killing treatment than the uninduced cells. This phenotype arose from lowered catalase activity in the CuCl2-pretreated cells. Thus, exposure to a nonlethal dose of Cu(2+) renders X. campestris vulnerable to H2O2, even when various genes for peroxide-metabolizing enzymes are highly expressed. Moreover, CuCl2-pretreated cells are sensitive to treatment with the redox cycling drug, menadione. No physiological cross-protection response was observed in CuCl2-treated cells in a subsequent challenge with killing concentrations of an organic hydroperoxide. As H2O2 production is an important initial plant immune response, defects in H2O2 protection are likely to reduce bacterial survival in plant hosts and enhance the usefulness of copper biocides in controlling bacterial pathogens.


Assuntos
Antibacterianos/toxicidade , Antioxidantes/metabolismo , Cobre/toxicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Xanthomonas campestris/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Xanthomonas campestris/genética
18.
Biochem Biophys Res Commun ; 452(3): 389-94, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25159842

RESUMO

The bacterial envelope possesses diverse functions, including protection against environmental stress and virulence factors for host infection. Here, we report the function of wxcB in Xanthomonas campestris pv. vesicatoria (Xcv), a causal agent of bacterial leaf spot disease in tomato and pepper. To characterize roles of wxcB, we generated a knockout mutant (XcvΔwxcB) and found that the virulence of the mutant was weaker than that of the wild type in tomato plants. To predict the mechanism affected by wxcB, we compared protein expressions between the wild type and the mutant. Expression of 152 proteins showed a greater than 2-fold difference. Proteins involved in motility and cell wall/membrane were the most abundant. Through phenotypic assays, we further demonstrated that the mutant displayed reduced motility and tolerance to treatment, but it showed increased biofilm formation. Interestingly, the LPS profile was unchanged. These results lead to new insights into the functions of wxcB that is associated with cell wall/membrane functions, which contributes to pathogen virulence.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/genética , Xanthomonas campestris/genética , Xanthomonas vesicatoria/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Capsicum/microbiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/metabolismo , Detergentes/farmacologia , Técnicas de Inativação de Genes , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Proteômica , Transdução de Sinais , Virulência , Fatores de Virulência/metabolismo , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/metabolismo , Xanthomonas campestris/patogenicidade , Xanthomonas vesicatoria/efeitos dos fármacos , Xanthomonas vesicatoria/metabolismo , Xanthomonas vesicatoria/patogenicidade
19.
Ann Clin Microbiol Antimicrob ; 12: 27, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24099586

RESUMO

BACKGROUND: The present work aimed to find out the antibacterial activity of Nymphaea nouchali flower on human and plant pathogenic bacteria. METHODS: Antibacterial potency of methanol, acetone, ethyl acetate and petroleum spirit extracts of Nymphaea nouchali flower has been tested against four human pathogenic bacteria Bacillus subtilis (FO 3026) Escherichia coli (IFO 3007), Klebsiella pneumonia (ATTC 10031) and Sarcina lutea (IFO 3232) and one plant pathogenic bacterium Xanthomonas campestris (IAM 1671) by disc diffusion assay. Zone of inhibition produced by different extracts against the test bacteria was measured and compared with standard antibiotic disc. RESULTS: Methanol extract possessed better antibacterial activity against two pathogenic bacteria, B. subtilis (FO 3026) and S. lutea (IFO 3232) than commercial antibiotic nalidixic acid. Acetone extract showed moderate sensitivity whereas B. subtilis (FO 3026), S. lutea (IFO 3232) and X. campestris (IAM 1671) showed resistance to ethyl acetate and petroleum spirit extracts. The minimum inhibitory concentrations of various extracts were ranged between 128-2048 µgml-1. CONCLUSIONS: Nymphaea nouchali flower could be a potential candidate for future development of novel broad spectrum antibacterial herbal formulation.


Assuntos
Antibacterianos/farmacologia , Nymphaea/metabolismo , Extratos Vegetais/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ácido Nalidíxico/farmacologia , Sarcina/efeitos dos fármacos , Xanthomonas campestris/efeitos dos fármacos
20.
Molecules ; 18(9): 11131-43, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24029746

RESUMO

Brassica rapa is a crucifer that is grown worldwide, mainly as a vegetable. The quality of B. rapa crops is highly affected by the disease caused by the bacteria Xanthomonas campestris pv. campestris (Xcc). Glucosinolates and phenolic compounds can confer resistance to Brassica crops against pests and diseases, but few works have been done to evaluate their role in Xcc resistance. The objectives of this work were: (1) to evaluate the in vivo and in vitro antibacterial effect of gluconapin, its isothiocyanate and the methanolic extracts of B. rapa against the type 4 of Xcc, and (2) to test if there is induced resistance mediated by glucosinolates or phenolic compounds in two varieties of B. rapa. Gluconapin and its ITC varieties had an antibacterial effect on the development of Xanthomonas and this effect was strongly dependent on the concentration applied. Methanolic extracts from B. rapa, containing glucosinolates and phenolic compounds, inhibited the growth of these bacteria. Concentration of gluconapin is higher in resistant plants than in the susceptible ones and there is an induction of gluconapin, some flavonoids and sinapic acid 48 to 72 h after inoculation. Gluconapin plays a role in the constitutive resistance to Xcc, while gluconapin, some flavonoids and hydroxycinnamic acids are induced by a Xcc infection but it is not clear if this induction confers resistance to this disease.


Assuntos
Antibacterianos/farmacologia , Brassica rapa/química , Glucosinolatos/farmacologia , Extratos Vegetais/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Brassica rapa/metabolismo , Brassica rapa/microbiologia , Resistência à Doença , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Glucosinolatos/isolamento & purificação , Glucosinolatos/metabolismo , Interações Hospedeiro-Patógeno , Fenóis/isolamento & purificação , Fenóis/metabolismo , Fenóis/farmacologia , Doenças das Plantas/microbiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Xanthomonas campestris/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA