Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.120
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(5): 882-892, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723163

RESUMO

Evolvability­the capacity to generate beneficial heritable variation­is a central property of biological systems. However, its origins and modulation by environmental factors have not been examined systematically. Here, we analyze the fitness effects of all single mutations in TEM-1 ß-lactamase (4,997 variants) under selection for the wild-type function (ampicillin resistance) and for a new function (cefotaxime resistance). Tolerance to mutation in this enzyme is bimodal and dependent on the strength of purifying selection in vivo, a result that derives from a steep non-linear ampicillin-dependent relationship between biochemical activity and fitness. Interestingly, cefotaxime resistance emerges from mutations that are neutral at low levels of ampicillin but deleterious at high levels; thus the capacity to evolve new function also depends on the strength of selection. The key property controlling evolvability is an excess of enzymatic activity relative to the strength of selection, suggesting that fluctuating environments might select for high-activity enzymes.


Assuntos
Resistência a Ampicilina , Cefotaxima/farmacologia , Evolução Molecular Direcionada , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamases/genética , Ampicilina/farmacologia , Escherichia coli/enzimologia , Aptidão Genética , Mutação , Resistência beta-Lactâmica , beta-Lactamases/química
2.
Nature ; 602(7896): 343-348, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110734

RESUMO

Carbapenems are antibiotics of last resort in the clinic. Owing to their potency and broad-spectrum activity, they are an important part of the antibiotic arsenal. The vital role of carbapenems is exemplified by the approval acquired by Merck from the US Food and Drug Administration (FDA) for the use of an imipenem combination therapy to treat the increased levels of hospital-acquired and ventilator-associated bacterial pneumonia that have occurred during the COVID-19 pandemic1. The C6 hydroxyethyl side chain distinguishes the clinically used carbapenems from the other classes of ß-lactam antibiotics and is responsible for their low susceptibility to inactivation by occluding water from the ß-lactamase active site2. The construction of the C6 hydroxyethyl side chain is mediated by cobalamin- or B12-dependent radical S-adenosylmethionine (SAM) enzymes3. These radical SAM methylases (RSMTs) assemble the alkyl backbone by sequential methylation reactions, and thereby underlie the therapeutic usefulness of clinically used carbapenems. Here we present X-ray crystal structures of TokK, a B12-dependent RSMT that catalyses three-sequential methylations during the biosynthesis of asparenomycin A. These structures, which contain the two metallocofactors of the enzyme and were determined in the presence and absence of a carbapenam substrate, provide a visualization of a B12-dependent RSMT that uses the radical mechanism that is shared by most of these enzymes. The structures provide insight into the stereochemistry of initial C6 methylation and suggest that substrate positioning governs the rate of each methylation event.


Assuntos
Carbapenêmicos/biossíntese , Metiltransferases/química , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Streptomyces/enzimologia , Tienamicinas/biossíntese , Vitamina B 12/metabolismo , Sítios de Ligação , Biocatálise , Coenzimas/metabolismo , Cristalografia por Raios X , Cinética , Metilação , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Streptomyces/metabolismo , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(12): e2313513121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483989

RESUMO

Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M ß-lactamase as a model system. CTX-M hydrolyzes ß-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the ß-lactamase enzyme and quantitated the function of variants against two ß-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.


Assuntos
Escherichia coli , beta-Lactamases , Escherichia coli/genética , Domínio Catalítico/genética , Mutação , Substituição de Aminoácidos , beta-Lactamases/química
4.
J Biol Chem ; 300(1): 105493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000656

RESUMO

Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all ß-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.


Assuntos
Ceftazidima , Farmacorresistência Bacteriana , Modelos Moleculares , Humanos , Aminoácidos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , Ceftazidima/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Farmacorresistência Bacteriana/genética , Cristalografia por Raios X , Domínio Catalítico/genética , Estrutura Terciária de Proteína
5.
Nature ; 566(7743): 224-229, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728502

RESUMO

Despite intense interest in expanding chemical space, libraries containing hundreds-of-millions to billions of diverse molecules have remained inaccessible. Here we investigate structure-based docking of 170 million make-on-demand compounds from 130 well-characterized reactions. The resulting library is diverse, representing over 10.7 million scaffolds that are otherwise unavailable. For each compound in the library, docking against AmpC ß-lactamase (AmpC) and the D4 dopamine receptor were simulated. From the top-ranking molecules, 44 and 549 compounds were synthesized and tested for interactions with AmpC and the D4 dopamine receptor, respectively. We found a phenolate inhibitor of AmpC, which revealed a group of inhibitors without known precedent. This molecule was optimized to 77 nM, which places it among the most potent non-covalent AmpC inhibitors known. Crystal structures of this and other AmpC inhibitors confirmed the docking predictions. Against the D4 dopamine receptor, hit rates fell almost monotonically with docking score, and a hit-rate versus score curve predicted that the library contained 453,000 ligands for the D4 dopamine receptor. Of 81 new chemotypes discovered, 30 showed submicromolar activity, including a 180-pM subtype-selective agonist of the D4 dopamine receptor.


Assuntos
Agonistas de Dopamina/química , Agonistas de Dopamina/isolamento & purificação , Simulação de Acoplamento Molecular/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cristalografia por Raios X , Humanos , Ligantes , Aprendizado de Máquina , Observação , Receptores de Dopamina D4/agonistas , Receptores de Dopamina D4/química , Receptores de Dopamina D4/metabolismo , beta-Lactamases/química
6.
Proc Natl Acad Sci U S A ; 119(18): e2117310119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486701

RESUMO

ß-Lactams are the most important class of antibacterials, but their use is increasingly compromised by resistance, most importantly via serine ß-lactamase (SBL)-catalyzed hydrolysis. The scope of ß-lactam antibacterial activity can be substantially extended by coadministration with a penicillin-derived SBL inhibitor (SBLi), i.e., the penam sulfones tazobactam and sulbactam, which are mechanism-based inhibitors working by acylation of the nucleophilic serine. The new SBLi enmetazobactam, an N-methylated tazobactam derivative, has recently completed clinical trials. Biophysical studies on the mechanism of SBL inhibition by enmetazobactam reveal that it inhibits representatives of all SBL classes without undergoing substantial scaffold fragmentation, a finding that contrasts with previous reports on SBL inhibition by tazobactam and sulbactam. We therefore reinvestigated the mechanisms of tazobactam and sulbactam using mass spectrometry under denaturing and nondenaturing conditions, X-ray crystallography, and NMR spectroscopy. The results imply that the reported extensive fragmentation of penam sulfone­derived acyl­enzyme complexes does not substantially contribute to SBL inhibition. In addition to observation of previously identified inhibitor-induced SBL modifications, the results reveal that prolonged reaction of penam sulfones with SBLs can induce dehydration of the nucleophilic serine to give a dehydroalanine residue that undergoes reaction to give a previously unobserved lysinoalanine cross-link. The results clarify the mechanisms of action of widely clinically used SBLi, reveal limitations on the interpretation of mass spectrometry studies concerning mechanisms of SBLi, and will inform the development of new SBLi working by reaction to form hydrolytically stable acyl­enzyme complexes.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , Penicilinas , Sulfonas , Triazóis , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
7.
Biochemistry ; 63(10): 1278-1286, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690676

RESUMO

Metallo-ß-lactamases (MBL) deactivate ß-lactam antibiotics through a catalytic reaction caused by two zinc ions at the active center. Since MBLs deteriorate a wide range of antibiotics, they are dangerous factors for bacterial multidrug resistance. In this work, organic synthesis, computational design, and crystal structure analysis were performed to obtain potent MBL inhibitors based on a previously identified hit compound. The hit compound comprised 3,4-dihydro-2(1H)-quinolinone linked with a phenyl-ether-methyl group via a thiazole ring. In the first step, the thiazole ring was replaced with a tertiary amine to avoid the planar structure. In the second step, we virtually modified the compound by keeping the quinolinone backbone. Every modified compound was bound to a kind of MBL, imipenemase-1 (IMP-1), and the binding pose was optimized by a molecular mechanics calculation. The binding scores were evaluated for the respective optimized binding poses. Given the predicted binding poses and calculated binding scores, candidate compounds were determined for organic syntheses. The inhibitory activities of the synthesized compounds were measured by an in vitro assay for two kinds of MBLs, IMP-1 and New Delhi metallo-ß-lactamase (NDM-1). A quinolinone connected with an amine bound with methyl-phenyl-ether-propyl and cyclohexyl-ethyl showed a 50% inhibitory concentration of 4.8 µM. An X-ray crystal analysis clarified the binding structure of a synthesized compound to IMP-1. The δ-lactam ring of quinolinone was hydrolyzed, and the generated carboxyl group was coordinated with zinc ions. The findings on the chemical structure and binding pose are expected to be a base for developing MBL inhibitors.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Cristalografia por Raios X , Desenho de Fármacos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/metabolismo
8.
J Biol Chem ; 299(5): 104606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924941

RESUMO

L1 is a dizinc subclass B3 metallo-ß-lactamase (MBL) that hydrolyzes most ß-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed ß-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the ß-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1ß-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1ß-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1ß-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (ß) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and ß-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , beta-Lactamas , Humanos , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Carbapenêmicos/metabolismo , Cristalografia , Cinética , Stenotrophomonas maltophilia/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
9.
J Biol Chem ; 299(5): 104630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963495

RESUMO

CTX-M ß-lactamases are a widespread source of resistance to ß-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 ß-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A ß-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.


Assuntos
Domínio Catalítico , Cefalosporinas , Resistência a Medicamentos , Escherichia coli , beta-Lactamases , Ampicilina/metabolismo , Ampicilina/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Catálise , Domínio Catalítico/genética , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Cefalosporinas/metabolismo , Cefalosporinas/farmacologia , Resistência a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Mutagênese , Penicilinas/metabolismo , Penicilinas/farmacologia , beta-Lactamas/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
10.
BMC Genomics ; 25(1): 508, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778284

RESUMO

BACKGROUND: Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.


Assuntos
Bactérias Gram-Negativas , Filogenia , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/genética , beta-Lactamases/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Antibacterianos/farmacologia , Genoma Bacteriano , Resistência beta-Lactâmica/genética , Antibióticos beta Lactam
11.
J Am Chem Soc ; 146(42): 28648-28652, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39400700

RESUMO

The resistance of Gram-negative bacteria to ß-lactam antibiotics is mostly due to deactivation of the antibiotics by bacterial enzymes, ß-lactamases. Disclosing the factors regulating ß-lactamase activity is vital for developing therapies to combat multidrug-resistant pathogens, such as Acinetobacter baumannii. Recent A. baumannii studies have revealed post-translational phosphorylation of serine ß-lactamases at the active site serine. However, the functional consequences of such phosphorylation are unclear. We have taken the first steps to define these consequences through studies of OXA-24/40, a carbapenem-hydrolyzing class D ß-lactamase in A. baumannii. We generated OXA-24/40 phosphorylated at its active site serine, S81, and explored its effects via NMR and MS. Phosphorylation inhibits carbapenemase activity by altering the active site conformation and impeding the carboxylation of an active site lysine, a requirement for class D ß-lactamase activity. The inhibition varies with the carbapenem side chain properties. Phosphorylation-induced chemical shift perturbations extend beyond the active site, suggesting allosteric effects. Our findings offer the first atomic-level insights into the functional consequences of serine phosphorylation of class D ß-lactamases.


Assuntos
Acinetobacter baumannii , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/química , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Fosforilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Domínio Catalítico , Modelos Moleculares
12.
Antimicrob Agents Chemother ; 68(2): e0099123, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38047644

RESUMO

Taniborbactam (TAN) is a novel broad-spectrum ß-lactamase inhibitor with significant activity against subclass B1 metallo-ß-lactamases (MBLs). Here, we showed that TAN exhibited an overall excellent activity against B1 MBLs including most NDM- and VIM-like as well as SPM-1, GIM-1, and DIM-1 enzymes, but not against SIM-1. Noteworthy, VIM-1-like enzymes (particularly VIM-83) were less inhibited by TAN than VIM-2-like. Like NDM-9, NDM-30 (also differing from NDM-1 by a single amino acid substitution) was resistant to TAN.


Assuntos
Ácidos Borínicos , beta-Lactamases , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Ácidos Borínicos/farmacologia , Ácidos Carboxílicos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
13.
Antimicrob Agents Chemother ; 68(8): e0172123, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38990013

RESUMO

The use of ß-lactam/ß-lactamase inhibitors constitutes an important strategy to counteract ß-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A ß-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other ß-lactamases.


Assuntos
Compostos Azabicíclicos , Inibidores de beta-Lactamases , beta-Lactamases , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Cristalografia por Raios X , Antibacterianos/farmacologia , Imipenem/farmacologia , Imipenem/química , Ceftazidima/farmacologia , Testes de Sensibilidade Microbiana , Domínio Catalítico
14.
Biochem Biophys Res Commun ; 720: 150102, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-38759302

RESUMO

The emergence of drug-resistant bacteria, facilitated by metallo-beta-lactamases (MBLs), presents a significant obstacle to the effective use of antibiotics in the management of clinical drug-resistant bacterial infections. AFM-1 is a MBL derived from Alcaligenes faecalis and shares 86% homology with the NDM-1 family. Both AFM-1 and NDM-1 demonstrate the ability to hydrolyze ampicillin and other ß-lactam antibiotics, however, their substrate affinities vary, and the specific reason for this variation remains unknown. We present the high-resolution structure of AFM-1. The active center of AFM-1 binds two zinc ions, and the conformation of the key amino acid residues in the active center is in accordance with that of NDM-1. However, the substrate-binding pocket of AFM-1 is considerably smaller than that of NDM-1. Additionally, the mutation of amino acid residues in the Loop3 region, as compared to NDM-1, results in the formation of a dense hydrophobic patch comprised of hydrophobic amino acid residues in this area, which facilitates substrate binding. Our findings lay the foundation for understanding the molecular mechanism of AFM-1 with a high affinity for substrates and provide a novel theoretical foundation for addressing the issue of drug resistance caused by B1 MBLs.


Assuntos
Modelos Moleculares , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamases/ultraestrutura , beta-Lactamases/genética , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/química , Conformação Proteica , Zinco/química , Zinco/metabolismo , Cristalografia por Raios X , Domínio Catalítico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sequência de Aminoácidos , Sítios de Ligação
15.
J Mol Recognit ; 37(5): e3100, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014869

RESUMO

Metallo-ß-lactamases (MßLs) hydrolyze and inactivate ß-lactam antibiotics, are a pivotal mechanism conferring resistance against bacterial infections. SMB-1, a novel B3 subclass of MßLs from Serratia marcescens could deactivate almost all ß-lactam antibiotics including ampicillin (AMP), which has posed a serious threat to public health. To illuminate the mechanism of recognition and interaction between SMB-1 and AMP, various fluorescence spectroscopy techniques and molecular dynamics simulation were employed. The results of quenching spectroscopy unraveled that AMP could make SMB-1 fluorescence quenching that mechanism was the static quenching; the synchronous and three-dimensional fluorescence spectra validated that the microenvironment and conformation of SMB-1 were altered after interaction with AMP. The molecular dynamics results demonstrated that the whole AMP enters the binding pocket of SMB-1, even though with a relatively bulky R1 side chain. Loop1 and loop2 in SMB-1 undergo significant fluctuations, and α2 (71-73) and local α5 (186-188) were turned into random coils, promoting zinc ion exposure consistent with circular dichroism spectroscopy results. The binding between them was driven by a combination of enthalpy and entropy changes, which was dominated by electrostatic force in agreement with the fluorescence observations. The present study brings structural insights and solid foundations for the design of new substrates for ß-lactamases and the development of effective antibiotics that are resistant to superbugs.


Assuntos
Ampicilina , Simulação de Dinâmica Molecular , Serratia marcescens , Espectrometria de Fluorescência , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , Ampicilina/química , Ampicilina/metabolismo , Ampicilina/farmacologia , Serratia marcescens/enzimologia , Ligação Proteica , Sítios de Ligação , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
16.
Nat Methods ; 18(4): 389-396, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828272

RESUMO

Protein engineering has enormous academic and industrial potential. However, it is limited by the lack of experimental assays that are consistent with the design goal and sufficiently high throughput to find rare, enhanced variants. Here we introduce a machine learning-guided paradigm that can use as few as 24 functionally assayed mutant sequences to build an accurate virtual fitness landscape and screen ten million sequences via in silico directed evolution. As demonstrated in two dissimilar proteins, GFP from Aequorea victoria (avGFP) and E. coli strain TEM-1 ß-lactamase, top candidates from a single round are diverse and as active as engineered mutants obtained from previous high-throughput efforts. By distilling information from natural protein sequence landscapes, our model learns a latent representation of 'unnaturalness', which helps to guide search away from nonfunctional sequence neighborhoods. Subsequent low-N supervision then identifies improvements to the activity of interest. In sum, our approach enables efficient use of resource-intensive high-fidelity assays without sacrificing throughput, and helps to accelerate engineered proteins into the fermenter, field and clinic.


Assuntos
Aprendizado Profundo , Engenharia de Proteínas/métodos , Algoritmos , Modelos Moleculares , beta-Lactamases/química
17.
Bioconjug Chem ; 35(6): 750-757, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38815180

RESUMO

Site-specific installation of non-natural functionality onto proteins has enabled countless applications in biotechnology, chemical biology, and biomaterials science. Though the N-terminus is an attractive derivatization location, prior methodologies targeting this site have suffered from low selectivity, a limited selection of potential chemical modifications, and/or challenges associated with divergent protein purification/modification steps. In this work, we harness the atypically split VidaL intein to simultaneously N-functionalize and purify homogeneous protein populations in a single step. Our method─referred to as VidaL-tagged expression and protein ligation (VEPL)─enables modular and scalable production of N-terminally modified proteins with native bioactivity. Demonstrating its flexibility and ease of use, we employ VEPL to combinatorially install 4 distinct (multi)functional handles (e.g., biotin, alkyne, fluorophores) to the N-terminus of 4 proteins that span three different classes: fluorescent (Enhanced Green Fluorescent Protein, mCherry), enzymatic (ß-lactamase), and growth factor (epidermal growth factor). Moving forward, we anticipate that VEPL's ability to rapidly generate and isolate N-modified proteins will prove useful across the growing fields of applied chemical biology.


Assuntos
Inteínas , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , beta-Lactamases/metabolismo , beta-Lactamases/química , Proteínas Luminescentes/química , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/química , Proteína Vermelha Fluorescente , Proteínas/química
18.
Faraday Discuss ; 252(0): 341-353, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842247

RESUMO

Noncovalent interaction networks provide a powerful means to represent and analyze protein structure. Such networks can represent both static structures and dynamic conformational ensembles. We have recently developed two tools for analyzing such interaction networks and generating hypotheses for protein engineering. Here, we apply these tools to the conformational regulation of substrate specificity in class A ß-lactamases, particularly the evolutionary development from generalist to specialist catalytic function and how that can be recapitulated or reversed by protein engineering. These tools, KIF and KIN, generate a set of prioritized residues and interactions as targets for experimental protein engineering.


Assuntos
Conformação Proteica , beta-Lactamases , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamases/genética , Evolução Molecular , Engenharia de Proteínas , Especificidade por Substrato , Modelos Moleculares
19.
J Chem Inf Model ; 64(9): 3706-3717, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38687957

RESUMO

L2 ß-lactamases, serine-based class A ß-lactamases expressed by Stenotrophomonas maltophilia, play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 ß-lactamase, innovative computational methodologies, including adaptive sampling molecular dynamics simulations, and deep learning methods (convolutional variational autoencoders and BindSiteS-CNN) explored conformational changes and correlations within the L2 ß-lactamase family together with other representative class A enzymes including SME-1 and KPC-2. This work also investigated the potential role of hydrophobic nodes and binding site residues in facilitating the functional mechanisms. The convergence of analytical approaches utilized in this effort yielded comprehensive insights into the dynamic behavior of the ß-lactamases, specifically from an evolutionary standpoint. In addition, this analysis presents a promising approach for understanding how the class A ß-lactamases evolve in response to environmental pressure and establishes a theoretical foundation for forthcoming endeavors in drug development aimed at combating AMR.


Assuntos
Aprendizado Profundo , Simulação de Dinâmica Molecular , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/química , Evolução Molecular , Conformação Proteica , Stenotrophomonas maltophilia/enzimologia
20.
J Chem Inf Model ; 64(10): 3977-3991, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38727192

RESUMO

The worldwide spread of the metallo-ß-lactamases (MBL), especially New Delhi metallo-ß-lactamase-1 (NDM-1), is threatening the efficacy of ß-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.


Assuntos
Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores de beta-Lactamases , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Ensaios de Triagem em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA