Comparison of six phantoms for entrance skin dose evaluation in 11 standard X-ray examinations.
J Appl Clin Med Phys
; 6(1): 101-13, 2005.
Article
em En
| MEDLINE
| ID: mdl-15770201
Entrance skin dose (ESD) is an important parameter for assessing the dose received by a patient in a single radiographic exposure. The most useful way to evaluate ESD is either by direct measurement on phantoms using an ionization chamber or using calculations based on a mathematical model. We compared six phantoms (three anthropomorphic, two physical, and one mathematical) in 11 standard clinical examinations (anterior-posterior (AP) abdomen, posterior-anterior (PA) chest, AP chest, lateral (LAT) chest, AP lumbar spine, LAT lumbar spine, LAT lumbo-sacral joint, AP pelvis, PA skull, LAT skull, and AP urinary tract) for two reasons: to determine the conversion factors to use for ESDs measured on different phantoms and to validate the mathematical model used. First, a comparison was done between the three anthropomorphic phantoms (Alderson Rando, chest RSD-77SPL, and 3M skull) and the two physical phantoms (Uniform and AAPM 31); for each examination we obtained "relative entrance skin dose factors." Second, we compared these five phantoms with the mathematical phantom: the overall accuracy of the model was better than 14%. Total mathematical model and total ionization chamber uncertainties, calculated by quadratic propagation of errors of the single components, were estimated to be on the order of +/-12% and +/-3%, respectively. To reduce the most significant source of uncertainty, the overall accuracy of the model was recalculated using new backscatter factors. The overall accuracy of the model improved: better than 12%. For each examination an anthropomorphic phantom was considered as the gold standard relative to the physical phantoms. In this way, it was possible to analyze the variations in phantom design and characteristics. Finally, the mathematical model was validated by more than 400 measurements taken on different phantoms and using a variety of radiological equipment. We conclude that the mathematical model can be used satisfactorily in ESD evaluations because it optimizes available resources, it is based on direct measurements, and it is an easy dynamic tool.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteção Radiológica
/
Radiometria
/
Fenômenos Fisiológicos da Pele
/
Algoritmos
/
Tomografia Computadorizada por Raios X
/
Modelos Biológicos
Tipo de estudo:
Diagnostic_studies
/
Etiology_studies
/
Evaluation_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
J Appl Clin Med Phys
Assunto da revista:
BIOFISICA
Ano de publicação:
2005
Tipo de documento:
Article
País de afiliação:
Itália