Your browser doesn't support javascript.
loading
Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation.
Dentin, Renaud; Benhamed, Fadila; Pégorier, Jean-Paul; Foufelle, Fabienne; Viollet, Benoit; Vaulont, Sophie; Girard, Jean; Postic, Catherine.
Afiliação
  • Dentin R; Département d'Endocrinologie, Institut Cochin, INSERM U567 CNRS UMR8104, Université René Descartes, Paris, France.
J Clin Invest ; 115(10): 2843-54, 2005 Oct.
Article em En | MEDLINE | ID: mdl-16184193
ABSTRACT
Dietary polyunsaturated fatty acids (PUFAs) are potent inhibitors of hepatic glycolysis and lipogenesis. Recently, carbohydrate-responsive element-binding protein (ChREBP) was implicated in the regulation by glucose of glycolytic and lipogenic genes, including those encoding L-pyruvate kinase (L-PK) and fatty acid synthase (FAS). The aim of our study was to assess the role of ChREBP in the control of L-PK and FAS gene expression by PUFAs. We demonstrated in mice, both in vivo and in vitro, that PUFAs [linoleate (C182), eicosapentanoic acid (C205), and docosahexaenoic acid (C226)] suppressed ChREBP activity by increasing ChREBP mRNA decay and by altering ChREBP translocation from the cytosol to the nucleus, independently of an activation of the AMP-activated protein kinase, previously shown to regulate ChREBP activity. In contrast, saturated [stearate (C18)] and monounsaturated fatty acids [oleate (C181)] had no effect. Since glucose metabolism via the pentose phosphate pathway is determinant for ChREBP nuclear translocation, the decrease in xylulose 5-phosphate concentrations caused by a PUFA diet favors a PUFA-mediated inhibition of ChREBP translocation. In addition, overexpression of a constitutive nuclear ChREBP isoform in cultured hepatocytes significantly reduced the PUFA inhibition of both L-PK and FAS gene expression. Our results demonstrate that the suppressive effect of PUFAs on these genes is primarily caused by an alteration of ChREBP nuclear translocation. In conclusion, we describe a novel mechanism to explain the inhibitory effect of PUFAs on the genes encoding L-PK and FAS and demonstrate that ChREBP is a pivotal transcription factor responsible for coordinating the PUFA suppression of glycolytic and lipogenic genes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gorduras Insaturadas na Dieta / Ácido Eicosapentaenoico / Ácidos Docosa-Hexaenoicos / Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos / Lipogênese / Glicólise Limite: Animals Idioma: En Revista: J Clin Invest Ano de publicação: 2005 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gorduras Insaturadas na Dieta / Ácido Eicosapentaenoico / Ácidos Docosa-Hexaenoicos / Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos / Lipogênese / Glicólise Limite: Animals Idioma: En Revista: J Clin Invest Ano de publicação: 2005 Tipo de documento: Article País de afiliação: França