Dissipative quantum hall effect in graphene near the Dirac point.
Phys Rev Lett
; 98(19): 196806, 2007 May 11.
Article
em En
| MEDLINE
| ID: mdl-17677649
We report on the unusual nature of the nu=0 state in the integer quantum Hall effect (QHE) in graphene and show that electron transport in this regime is dominated by counterpropagating edge states. Such states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large longitudinal resistivity rho(xx) > or approximately h/e(2), in striking contrast to rho(xx) behavior in the standard QHE. The nu=0 state in graphene is also predicted to exhibit pronounced fluctuations in rho(xy) and rho(xx) and a smeared zero Hall plateau in sigma(xy), in agreement with experiment. The existence of gapless edge states puts stringent constraints on possible theoretical models of the nu=0 state.
Buscar no Google
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2007
Tipo de documento:
Article
País de afiliação:
Estados Unidos