Influence of source parameters on large-field electron beam profiles calculated using Monte Carlo methods.
Phys Med Biol
; 54(1): 105-16, 2009 Jan 07.
Article
em En
| MEDLINE
| ID: mdl-19075360
The purpose of this paper was to study the source model for a Monte Carlo simulation of electron beams from a medical linear accelerator. In a prior study, a non-divergent Gaussian source with a full-width at half-maximum (FWHM) of 0.15 cm was successful in predicting relative dose distributions for electron beams with applicators. However, for large fields with the applicator removed, discrepancies were found between measured and calculated profiles, particularly in the shoulder region. In this work, the source was changed to a divergent Gaussian spatial distribution and the FWHM parameter was varied to produce better agreement with measured data. The influence of the FWHM source parameter on profiles was observed at multiple locations in the simulation geometry including in-air fluence profiles at a 95 cm source-to-surface distance (SSD), percent depth dose profiles and off-axis profiles (OARs) in a water phantom for two SSDs, 80 and 100 cm. For a 6 MeV 40 x 40 cm(2) OAR profile, discrepancies in the shoulder region were reduced from 15% to 4% using a FWHM value of 0.45 cm. The optimal FWHM values for the other energies were 0.45 cm for 9 MeV, 0.22 for 12 MeV, 0.25 for 16 MeV and 0.2 cm for 20 MeV. Although this range of values was larger than measured focal spot sizes reported by other researchers, using the increased FWHM values improved the fit at most locations in the simulation geometry, giving confidence that the model could be used with a variety of SSDs and field sizes.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Método de Monte Carlo
/
Elétrons
Tipo de estudo:
Health_economic_evaluation
/
Prognostic_studies
Idioma:
En
Revista:
Phys Med Biol
Ano de publicação:
2009
Tipo de documento:
Article
País de afiliação:
Estados Unidos