Your browser doesn't support javascript.
loading
Biosynthesis of the Caenorhabditis elegans dauer pheromone.
Butcher, Rebecca A; Ragains, Justin R; Li, Weiqing; Ruvkun, Gary; Clardy, Jon; Mak, Ho Yi.
Afiliação
  • Butcher RA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A ; 106(6): 1875-9, 2009 Feb 10.
Article em En | MEDLINE | ID: mdl-19174521
ABSTRACT
To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Feromônios / Caenorhabditis elegans Limite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Feromônios / Caenorhabditis elegans Limite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Estados Unidos