Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons.
Proc Natl Acad Sci U S A
; 106(9): 3561-6, 2009 Mar 03.
Article
em En
| MEDLINE
| ID: mdl-19204281
Hippocampal theta (5-10 Hz) and gamma (35-85 Hz) oscillations depend on an inhibitory network of GABAergic interneurons. However, the lack of methods for direct and cell-type-specific interference with inhibition has prevented better insights that help link synaptic and cellular properties with network function. Here, we generated genetically modified mice (PV-Deltagamma(2)) in which synaptic inhibition was ablated in parvalbumin-positive (PV+) interneurons. Hippocampal local field potential and unit recordings in the CA1 area of freely behaving mice revealed that theta rhythm was strongly reduced in these mice. The characteristic coupling of theta and gamma oscillations was strongly altered in PV-Deltagamma(2) mice more than could be accounted for by the reduction in theta rhythm only. Surprisingly, gamma oscillations were not altered. These data indicate that synaptic inhibition onto PV+ interneurons is indispensable for theta- and its coupling to gamma oscillations but not for rhythmic gamma-activity in the hippocampus. Similar alterations in rhythmic activity were obtained in a computational hippocampal network model mimicking the genetic modification, suggesting that intrahippocampal networks might contribute to these effects.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Parvalbuminas
/
Hipocampo
/
Interneurônios
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
2009
Tipo de documento:
Article
País de afiliação:
Reino Unido