Your browser doesn't support javascript.
loading
The B-H...H-P dihydrogen bonding in ion pair complexes [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)] (n = 0-3) and its implication in H(2) elimination and activation reactions.
Gao, Shulin; Wu, Wei; Mo, Yirong.
Afiliação
  • Gao S; State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
J Phys Chem A ; 113(28): 8108-17, 2009 Jul 16.
Article em En | MEDLINE | ID: mdl-19555090
ABSTRACT
The B-H(delta-)...(delta+)H-P dihydrogen bonding (DHB) in ion pair complexes [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)] (n = 0-3) and its role in the combination of proton and hydride with the release of H(2) or, reversibly, the heterolytic activation of H(2) by Lewis pairs (CF(3))(3)BPH(3-n)(Me)(n) have been theoretically investigated at the MP2 and DFT levels. It is found that the B-H...H-P bonds behave similarly to those in neutral pairs and ion-molecule complexes in most respects, such as the linearity of the H...H-P moiety, the characteristics of the electron transfer and rearrangement, and the topological properties of the DHB critical point, except that in certain cases, a blue-shifting of the H-bond vibrational frequency is observed. In [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)], the proton shifting within the complexes leads to the formation of the dihydrogen complex B(CF(3))(3)(eta(2)-H(2)), which is followed by a subsequent H(2) release. The stability of B(CF(3))(3)(eta(2)-H(2)) (D(e)/D(0) = 10.8/6.0 kcal/mol) makes the proton-hydride combination proceed in a fashion similar to the protonation reactions in transition-metal hydrides rather than those in group 13 hydrides EH(4)(-) (E = B, Al, Ga). As for the H(2)-splitting reaction R(3)BPR'(3) + H(2) --> [R(3)BH(-)][HPR'(3)(+)], classical Lewis pair (CLP) (CF(3))(3)BPH(3) exhibits a high barrier and results in an unstable ion pair product [(CF(3))(3)BH(-)][HPH(3)(+)] compared with the "frustrated Lewis pair" (FLP) (C(6)F(5))(3)BP(tBu)(3). A detailed analysis of the mechanistic aspects of H(2) activation by (CF(3))(3)BPH(3) and (C(6)F(5))(3)BP(tBu)(3), supported by another CLP (CF(3))(3)BP(tBu)(3) which has a binding energy comparable to (CF(3))(3)BPH(3) but a reaction exothermicity comparable to (C(6)F(5))(3)BP(tBu)(3), allows us to suggest that the low stability of FLP (C(6)F(5))(3)BP(tBu)(3) is the determining factor for the low reaction barrier. The relative stability and other properties of the ion pair products [R(3)BH(-)][HPR'(3)(+)] have also been analyzed. Results strongly support the view proposed by Rokob et al. [ Rokob , T. A. ; Hamza , A. ; Stirling , A. ; Soos , T. ; Papai , I. Angew. Chem., Int. Ed. 2008 , 47 , 2435 ] that the frustration energy lowers the energy barrier and increases the exothermicity of the reaction.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Boro / Hidrogênio / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2009 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Boro / Hidrogênio / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2009 Tipo de documento: Article País de afiliação: China