Your browser doesn't support javascript.
loading
Autophagy is required during cycling hypoxia to lower production of reactive oxygen species.
Rouschop, Kasper M A; Ramaekers, Chantal H M A; Schaaf, Marco B E; Keulers, Tom G H; Savelkouls, Kim G M; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.
Afiliação
  • Rouschop KM; Maastricht Radiation Oncology (MaastRo) Lab, GROW-School for Oncology and Developmental Biology, University of Maastricht, The Netherlands. Kasper.Rouschop@maastro.unimaas.nl
Radiother Oncol ; 92(3): 411-6, 2009 Sep.
Article em En | MEDLINE | ID: mdl-19616335
BACKGROUND AND PURPOSE: Human tumors are characterized by the presence of cells that experience periodic episodes of hypoxia followed by reoxygenation. These cells are exposed to reactive oxygen species (ROS) upon reoxygenation and require adaptation to this stress by lowering ROS production or enhancing ROS-clearance for their survival. We hypothesized that autophagy, a lysosomal degradation pathway, may be involved in reducing ROS during periodic hypoxia through removal of ROS producing species. MATERIALS AND METHODS: Human tumor cells (MCF-7, HT29, U373) were exposed to cycles of hypoxia (O(2)<0.02%) and reoxygenation in the absence or presence of the autophagy inhibitor chloroquine (CQ). Clonogenic survival, ROS production and mitochondrial-DNA content were assessed. In addition, A549 cells overexpressing wild-type or K63-mutated ubiquitin (K63R) were analyzed for ROS production. RESULTS: Our data indicate that CQ treatment sensitizes cells to cycling hypoxia, due to increased production of ROS, associated with an incapacity to reduce mitochondrial content. Addition of the ROS-scavenger N-acetyl-cysteine increased cell viability and neutralized CQ-effects. Additionally, genetic prevention of K63-linked ubiquitin chains that are required for the removal of toxic protein aggregates by autophagy, resulted in increased ROS production. CONCLUSIONS: Inhibition of autophagy substantially increases cell death induced by cycling hypoxia through increased ROS production, providing an opportunity to decrease the hypoxic fraction within tumors and enhance tumor therapy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / DNA Mitocondrial / Cloroquina / Espécies Reativas de Oxigênio / Hipóxia Limite: Humans Idioma: En Revista: Radiother Oncol Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / DNA Mitocondrial / Cloroquina / Espécies Reativas de Oxigênio / Hipóxia Limite: Humans Idioma: En Revista: Radiother Oncol Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Holanda