Your browser doesn't support javascript.
loading
The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways.
Orelli, Barbara; McClendon, T Brooke; Tsodikov, Oleg V; Ellenberger, Tom; Niedernhofer, Laura J; Schärer, Orlando D.
Afiliação
  • Orelli B; From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400.
  • McClendon TB; the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863.
  • Tsodikov OV; the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-2676, and.
  • Ellenberger T; the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
  • Niedernhofer LJ; the Department of Microbiology and Molecular Genetics and Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-1863.
  • Schärer OD; From the Department of Pharmacological Sciences and Chemistry, Stony Brook University, Stony Brook, New York 11794-3400. Electronic address: orlando@pharm.stonybrook.edu.
J Biol Chem ; 285(6): 3705-3712, 2010 Feb 05.
Article em En | MEDLINE | ID: mdl-19940136
ABSTRACT
The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Proteínas de Ligação a DNA / Reparo do DNA / Endonucleases / Proteína de Xeroderma Pigmentoso Grupo A Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Proteínas de Ligação a DNA / Reparo do DNA / Endonucleases / Proteína de Xeroderma Pigmentoso Grupo A Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2010 Tipo de documento: Article