Your browser doesn't support javascript.
loading
Disruption of zebrafish cyclin G-associated kinase (GAK) function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development.
Bai, Ting; Seebald, Jamie L; Kim, Kyu-Eui; Ding, Hong-Mei; Szeto, Daniel P; Chang, Henry C.
Afiliação
  • Bai T; Department of Biological Sciences, Purdue University, 915 W, State St,, West Lafayette, Indiana 47907-2054, USA.
BMC Dev Biol ; 10: 7, 2010 Jan 18.
Article em En | MEDLINE | ID: mdl-20082716
ABSTRACT

BACKGROUND:

The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish.

RESULTS:

Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK), differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures.

CONCLUSION:

In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Proteínas Serina-Treonina Quinases / Proteínas de Peixe-Zebra / Neurogênese Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: BMC Dev Biol Assunto da revista: EMBRIOLOGIA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Proteínas Serina-Treonina Quinases / Proteínas de Peixe-Zebra / Neurogênese Tipo de estudo: Etiology_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: BMC Dev Biol Assunto da revista: EMBRIOLOGIA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos