Nonparametric intensity priors for level set segmentation of low contrast structures.
Med Image Comput Comput Assist Interv
; 12(Pt 1): 239-46, 2009.
Article
em En
| MEDLINE
| ID: mdl-20425993
Segmentation of low contrast objects is an important task in clinical applications like lesion analysis and vascular wall remodeling analysis. Several solutions to low contrast segmentation that exploit high-level information have been previously proposed, such as shape priors and generative models. In this work, we incorporate a priori distributions of intensity and low-level image information into a nonparametric dissimilarity measure that defines a local indicator function for the likelihood of belonging to a foreground object. We then integrate the indicator function into a level set formulation for segmenting low contrast structures. We apply the technique to the clinical problem of positive remodeling of the vessel wall in cardiac CT angiography images. We present results on a dataset of twenty five patient scans, showing improvement over conventional gradient-based level sets.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Reconhecimento Automatizado de Padrão
/
Inteligência Artificial
/
Angiografia
/
Interpretação de Imagem Radiográfica Assistida por Computador
/
Intensificação de Imagem Radiográfica
/
Tomografia Computadorizada por Raios X
/
Técnica de Subtração
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Med Image Comput Comput Assist Interv
Assunto da revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
Ano de publicação:
2009
Tipo de documento:
Article
País de afiliação:
Estados Unidos