Your browser doesn't support javascript.
loading
Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres.
Layman, Hans; Li, Xiaoyi; Nagar, Ekta; Vial, Ximena; Pham, Si M; Andreopoulos, Fotios M.
Afiliação
  • Layman H; Department of Surgery, University of California at San Francisco, San Francisco, CA, USA.
J Biomater Sci Polym Ed ; 23(1-4): 185-206, 2012.
Article em En | MEDLINE | ID: mdl-21192837
ABSTRACT
Neo-vessel formation in ischemic tissues relies on numerous growth factors and cell fractions for the formation of mature, stable, functional vasculature. However, the efforts to regenerate tissues typically rely on the administration of a single growth factor or cells alone. Conversely, polymeric matrices have been investigated extensively to deliver multiple growth factors at pre-determined rates to form stable blood vessels in ischemic tissues. We report on a novel sequential delivery system of a fibrin hydrogel containing ionic-albumin microspheres that allows for the controlled release of two growth factors. The use of this system was investigated in the context of therapeutic angiogenesis. Material properties were determined based on degree of swelling measurements and degradation characteristics. Release kinetics of model angiogenic polypeptides FGF-2 and G-CSF were determined using ELISA and the bioactivity of released protein was evaluated in human endothelial cell cultures. The release of growth factors from ionic-albumin microspheres was significantly delayed compared to the growth factor released from fibrin matrices in the absence of spheres. The scaffolds were implanted in a murine critical limb ischemia model at two concentrations, 40 ng (low) and 400 ng (high), restoring 92% of the blood flow in a normally perfused limb using a fibrin hydrogel releasing FGF-2 containing albumin-PLL microspheres releasing G-CSF (measured by LDPI at the high concentration), a 3.2-fold increase compared to untreated limbs. The extent of neo-vessel formation was delineated by immunohistochemical staining for capillary density (CD-31+) and mature vessel formation (α-SMA+). In conclusion, our study demonstrated that the release kinetics from our scaffold have distinct kinetics previously unpublished and the delivery of these factors resulted in hindlimb reperfusion, and robust capillary and mature vessel formation after 8 weeks compared to either growth factor alone or bolus administration of growth factor.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Soroalbumina Bovina / Fibrina / Fator 2 de Crescimento de Fibroblastos / Fator Estimulador de Colônias de Granulócitos / Neovascularização Fisiológica / Hidrogéis / Microesferas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Biomater Sci Polym Ed Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Soroalbumina Bovina / Fibrina / Fator 2 de Crescimento de Fibroblastos / Fator Estimulador de Colônias de Granulócitos / Neovascularização Fisiológica / Hidrogéis / Microesferas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: J Biomater Sci Polym Ed Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos