Variance estimation for statistics computed from single recurrent event processes.
Biometrics
; 67(3): 711-8, 2011 Sep.
Article
em En
| MEDLINE
| ID: mdl-21361887
This article is concerned with variance estimation for statistics that are computed from single recurrent event processes. Such statistics are important in diagnosis for each individual recurrent event process. The proposed method only assumes a semiparametric form for the first-order structure of the processes but not for the second-order (i.e., dependence) structure. The new variance estimator is shown to be consistent for the target parameter under very mild conditions. The estimator can be used in many applications in semiparametric rate regression analysis of recurrent event data such as outlier detection, residual diagnosis, as well as robust regression. A simulation study and application to two real data examples are used to demonstrate the use of the proposed method.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Recidiva
/
Modelos Estatísticos
/
Biometria
Tipo de estudo:
Diagnostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Biometrics
Ano de publicação:
2011
Tipo de documento:
Article
País de afiliação:
Estados Unidos