Your browser doesn't support javascript.
loading
Pressure-induced structural, magnetic, and transport transitions in the two-legged ladder Sr3Fe2O5.
Yamamoto, Takafumi; Tassel, Cédric; Kobayashi, Yoji; Kawakami, Takateru; Okada, Taku; Yagi, Takehiko; Yoshida, Hideto; Kamatani, Takanori; Watanabe, Yoshitaka; Kikegawa, Takumi; Takano, Mikio; Yoshimura, Kazuyoshi; Kageyama, Hiroshi.
Afiliação
  • Yamamoto T; Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University , Kyoto 615-8510, Japan.
J Am Chem Soc ; 133(15): 6036-43, 2011 Apr 20.
Article em En | MEDLINE | ID: mdl-21438555
The layered compound SrFeO(2) with an FeO(4) square-planar motif exhibits an unprecedented pressure-induced spin state transition (S = 2 to 1), together with an insulator-to-metal (I-M) and an antiferromagnetic-to-ferromagnetic (AFM-FM) transition. In this work, we have studied the pressure effect on the structural, magnetic, and transport properties of the structurally related two-legged spin ladder Sr(3)Fe(2)O(5). When pressure was applied, this material first exhibited a structural transition from Immm to Ammm at P(s) = 30 ± 2 GPa. This transition involves a phase shift of the ladder blocks from (1/2,1/2,1/2) to (0,1/2,1/2), by which a rock-salt type SrO block with a 7-fold coordination around Sr changes into a CsCl-type block with 8-fold coordination, allowing a significant reduction of volume. However, the S = 2 antiferromagnetic state stays the same. Next, a spin state transition from S = 2 to S = 1, along with an AFM-FM transition, was observed at P(c) = 34 ± 2 GPa, similar to that of SrFeO(2). A sign of an I-M transition was also observed at pressure around P(c). These results suggest a generality of the spin state transition in square planar coordinated S = 2 irons of n-legged ladder series Sr(n+1)Fe(n)O(2n+1) (n = 1, 2, 3, ...). It appears that the structural transition independently occurs without respect to other transitions. The necessary conditions for a structural transition of this type and possible candidate materials are discussed.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Japão