Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk.
Osteoporos Int
; 23(7): 1877-87, 2012 Jul.
Article
em En
| MEDLINE
| ID: mdl-22215184
SUMMARY: Periostin (POSTN) as a regulator of osteoblast differentiation and bone formation may affect susceptibility to osteoporosis. This study suggests POSTN as a candidate gene for bone mineral density (BMD) variation and vertebral fracture risk, which could better our understanding about the genetic pathogenesis of osteoporosis and will be useful in clinic in the future. INTRODUCTION: The genetic determination of osteoporosis is complex and ill-defined. Periostin (POSTN), an extracellular matrix secreted by osteoblasts and a regulator of osteoblast differentiation and bone formation, may affect susceptibility to osteoporosis. METHODS: We adopted a tag-single nucleotide polymorphism (SNP) based association method followed by imputation-based verification and identification of a causal variant. The association was investigated in 1,572 subjects with extreme-BMD and replicated in an independent population of 2,509 subjects. BMD was measured by dual X-ray absorptiometry. Vertebral fractures were identified by assessing vertebral height from X-rays of the thoracolumbar spine. Association analyses were performed with PLINK toolset and imputation analyses with MACH software. The top imputation finding was subsequently validated by genotyping. Interactions between POSTN and another BMD-related candidate gene sclerostin (SOST) were analyzed using MDR program and validated by logistical regression analyses. The putative transcription factor binding with target sequence was confirmed by electrophoretic mobility shift assay (EMSA). RESULTS: Several SNPs of POSTN were associated with BMD or vertebral fractures. The most significant polymorphism was rs9547970, located at the -2,327 bp upstream (P = 6.8 × 10(-4)) of POSTN. Carriers of the minor allele G per copy of rs9547970 had 1.33 higher risk of vertebral fracture (P = 0.007). An interactive effect between POSTN and SOST upon BMD variation was suggested (P < 0.01). A specific binding of CDX1 to the sequence of POSTN with the major allele A of rs9547970 but not the variant G allele was confirmed by EMSA. CONCLUSIONS: Our results suggest POSTN as a candidate gene for BMD variation and vertebral fracture risk.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Densidade Óssea
/
Moléculas de Adesão Celular
/
Fraturas da Coluna Vertebral
/
Proteínas de Homeodomínio
/
Fraturas por Osteoporose
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Osteoporos Int
Assunto da revista:
METABOLISMO
/
ORTOPEDIA
Ano de publicação:
2012
Tipo de documento:
Article
País de afiliação:
China