Your browser doesn't support javascript.
loading
A first-order k-space model for elastic wave propagation in heterogeneous media.
Firouzi, K; Cox, B T; Treeby, B E; Saffari, N.
Afiliação
  • Firouzi K; Department of Mechanical Engineering, University College London, London, WC1E 7JE, United Kingdom. kamyar.firouzi.09@ucl.ac.uk
J Acoust Soc Am ; 132(3): 1271-83, 2012 Sep.
Article em En | MEDLINE | ID: mdl-22978855
ABSTRACT
A pseudospectral model of linear elastic wave propagation is described based on the first order stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calculations are derived from the dyadic Green's function solution to the second-order elastic wave equation and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous media. The formulation in k-space allows the wavefield to be split easily into compressional and shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for accurate simulations, is described, along with other practical details of the implementation. The model is verified through comparison with exact solutions for canonical examples and further examples are given to show the efficiency of the method for practical problems. The efficiency of the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the k-space adjustments.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Som / Acústica / Modelos Lineares Tipo de estudo: Prognostic_studies Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Som / Acústica / Modelos Lineares Tipo de estudo: Prognostic_studies Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Reino Unido