Your browser doesn't support javascript.
loading
Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells.
Ronan, William; Deshpande, Vikram S; McMeeking, Robert M; McGarry, J Patrick.
Afiliação
  • Ronan W; Department of Mechanical and Biomedical Engineering, National University of Ireland Galway, University Road, Galway, Ireland. w.ronan1@nuigalway.ie
J Mech Behav Biomed Mater ; 14: 143-57, 2012 Oct.
Article em En | MEDLINE | ID: mdl-23026692
Numerous in-vitro studies have established that cells react to their physical environment and to applied mechanical loading. However, the mechanisms underlying such phenomena are poorly understood. Previous modelling of cell compression considered the cell as a passive homogenous material, requiring an artificial increase in the stiffness of spread cells to replicate experimentally measured forces. In this study, we implement a fully 3D active constitutive formulation that predicts the distribution, remodelling, and contractile behaviour of the cytoskeleton. Simulations reveal that polarised and axisymmetric spread cells contain stress fibres which form dominant bundles that are stretched during compression. These dominant fibres exert tension; causing an increase in computed compression forces compared to round cells. In contrast, fewer stress fibres are computed for round cells and a lower resistance to compression is predicted. The effect of different levels of cellular contractility associated with different cell phenotypes is also investigated. Highly contractile cells form more dominant circumferential stress fibres and hence provide greater resistance to compression. Computed predictions correlate strongly with published experimentally observed trends of compression resistance as a function of cellular contractility and offer an insight into the link between cell geometry, stress fibre distribution and contractility, and cell deformability. Importantly, it is possible to capture the behaviour of both round and spread cells using a given, unchanged set of material parameters for each cell type. Finally, it is demonstrated that stress distributions in the cell cytoplasm and nucleus computed using the active formulation differ significantly from those computed using passive material models.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Força Compressiva / Análise de Elementos Finitos / Fibras de Estresse Tipo de estudo: Prognostic_studies Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Irlanda

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Força Compressiva / Análise de Elementos Finitos / Fibras de Estresse Tipo de estudo: Prognostic_studies Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Irlanda