Your browser doesn't support javascript.
loading
Subcomplexes of ancestral respiratory complex I subunits rapidly turn over in vivo as productive assembly intermediates in Arabidopsis.
Li, Lei; Nelson, Clark J; Carrie, Chris; Gawryluk, Ryan M R; Solheim, Cory; Gray, Michael W; Whelan, James; Millar, A Harvey.
Afiliação
  • Li L; Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Western Australia, Australia.
J Biol Chem ; 288(8): 5707-17, 2013 Feb 22.
Article em En | MEDLINE | ID: mdl-23271729
ABSTRACT
Subcomplexes of mitochondrial respiratory complex I (CI; EC 1.6.5.3) are shown to turn over in vivo, and we propose a role in an ancestral assembly pathway. By progressively labeling Arabidopsis cell cultures with (15)N and isolating mitochondria, we have identified CI subcomplexes through differences in (15)N incorporation into their protein subunits. The 200-kDa subcomplex, containing the ancestral γ-carbonic anhydrase (γ-CA), γ-carbonic anhydrase-like, and 20.9-kDa subunits, had a significantly higher turnover rate than intact CI or CI+CIII(2). In vitro import of precursors for these CI subunits demonstrated rapid generation of subcomplexes and revealed that their specific abundance varied when different ancestral subunits were imported. Time course studies of precursor import showed the further assembly of these subcomplexes into CI and CI+CIII(2), indicating that the subcomplexes are productive intermediates of assembly. The strong transient incorporation of new subunits into the 200-kDa subcomplex in a γ-CA mutant is consistent with this subcomplex being a key initiator of CI assembly in plants. This evidence alongside the pattern of coincident occurrence of genes encoding these particular proteins broadly in eukaryotes, except for opisthokonts, provides a framework for the evolutionary conservation of these accessory subunits and evidence of their function in ancestral CI assembly.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Regulação da Expressão Gênica de Plantas / Complexo I de Transporte de Elétrons Idioma: En Revista: J Biol Chem Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Regulação da Expressão Gênica de Plantas / Complexo I de Transporte de Elétrons Idioma: En Revista: J Biol Chem Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Austrália