Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.
J Anim Sci
; 90 Suppl 4: 49-58, 2012 Dec.
Article
em En
| MEDLINE
| ID: mdl-23365281
Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and insulin production. These methods will therefore support elucidation of mechanisms that link starch and fiber properties to whole body nutrient use and intestinal health.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Amido
/
Suínos
/
Fibras na Dieta
/
Dieta
/
Ração Animal
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
J Anim Sci
Ano de publicação:
2012
Tipo de documento:
Article
País de afiliação:
Canadá