Your browser doesn't support javascript.
loading
Phlorizin pretreatment reduces acute renal toxicity in a mouse model for diabetic nephropathy.
Brouwers, Bas; Pruniau, Vincent P E G; Cauwelier, Elisa J G; Schuit, Frans; Lerut, Evelyne; Ectors, Nadine; Declercq, Jeroen; Creemers, John W M.
Afiliação
  • Brouwers B; Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics.
  • Pruniau VPEG; Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics.
  • Cauwelier EJG; Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics.
  • Schuit F; Gene Expression Unit, Department of Molecular Cell Biology, KU Leuven, 3000 Leuven.
  • Lerut E; Department of Pathology, University Hospital Gasthuisberg, 3000 Leuven, Belgium.
  • Ectors N; Department of Pathology, University Hospital Gasthuisberg, 3000 Leuven, Belgium.
  • Declercq J; Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics. Electronic address: jeroen.declercq@med.kuleuven.be.
  • Creemers JWM; Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics.
J Biol Chem ; 288(38): 27200-27207, 2013 Sep 20.
Article em En | MEDLINE | ID: mdl-23940028
ABSTRACT
Streptozotocin (STZ) is widely used as diabetogenic agent in animal models for diabetic nephropathy (DN). However, it is also directly cytotoxic to kidneys, making it difficult to distinguish between DN-related and STZ-induced nephropathy. Therefore, an improved protocol to generate mice for DN studies, with a quick and robust achievement of the diabetic state, without direct kidney toxicity is required. To investigate the mechanism leading to STZ-induced nephropathy, kidney damage was induced with a high dose of STZ. This resulted in delayed gastric emptying, at least partially caused by impaired desacyl ghrelin clearance. STZ uptake in the kidneys is to a large extent mediated by the sodium/glucose cotransporters (Sglts) because the Sglt inhibitor phlorizin could reduce STZ uptake in the kidneys. Consequently, the direct toxic effects in the kidney and the gastric dilatation were resolved without interfering with the ß-cell toxicity. Furthermore, pancreatic STZ uptake was increased, hereby decreasing the threshold for ß-cell toxicity, allowing for single low non-nephrotoxic STZ doses (70 mg/kg). In conclusion, this study provides novel insights into the mechanism of STZ toxicity in kidneys and suggests a more efficient regime to induce DN with little or no toxic side effects.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Florizina / Nefropatias Diabéticas / Células Secretoras de Insulina / Transportador 1 de Glucose-Sódio / Rim Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Florizina / Nefropatias Diabéticas / Células Secretoras de Insulina / Transportador 1 de Glucose-Sódio / Rim Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2013 Tipo de documento: Article