Your browser doesn't support javascript.
loading
Anomalous property of Ag(BO2)2 hyperhalogen: does spin-orbit coupling matter?
Chen, Hui; Kong, Xiang-Yu; Zheng, Weijun; Yao, Jiannian; Kandalam, Anil K; Jena, Puru.
Afiliação
  • Chen H; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190 (China). chenh@iccas.ac.cn.
Chemphyschem ; 14(14): 3303-8, 2013 Oct 07.
Article em En | MEDLINE | ID: mdl-23943601
ABSTRACT
Hyperhalogens were recently identified as a new class of highly electronagative species which are composed of metals and superhalogens. In this work, high-level theoretical calculations and photoelectron spectroscopy experiments are systematically conducted to investigate a series of coinage-metal-containing hyperhalogen anions, Cu(BO(2))(2)(-), Ag(BO(2))(2)(-), and Au(BO(2))(2)(-). The vertical electron detachment energy (VDE) of Ag(BO(2))(2)(-) is anomalously higher than those of Au(BO(2))(2)(-) and Cu(BO(2))(2)(-). In quantitative agreement with the experiment, high-level ab initio calculations reveal that spin-orbit coupling (SOC) lowers the VDE of Au(BO(2))(2)(-) significantly. The sizable magnitude of about 0.5 eV of SOC effect on the VDE of Au(BO(2))(2)(-) demonstrates that SOC plays an important role in the electronic structure of gold hyperhalogens. This study represents a new paradigm for relativistic electronic structure calculations for the one-electron-removal process of ionic Au(I)L(2) complexes, which is characterized by a substantial SOC effect.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2013 Tipo de documento: Article