Mesangial cell αvß8-integrin regulates glomerular capillary integrity and repair.
Am J Physiol Renal Physiol
; 306(12): F1400-9, 2014 Jun 15.
Article
em En
| MEDLINE
| ID: mdl-24740792
αvß8-Integrin is most abundantly expressed in the kidney, brain, and female reproductive organs, and its cognate ligand is latent transforming growth factor (LTGF)-ß. Kidney αvß8-integrin localizes to mesangial cells, and global ß8-integrin gene (Itgb8) deletion results in embryonic lethality due to impaired placentation and cerebral hemorrhage. To circumvent the lethality and better define kidney αvß8-integrin function, Cre-lox technology was used to generate mesangial-specific Itgb8-null mice. Platelet-derived growth factor-ß receptor (PDGFBR)-Cre mice crossed with a reporter strain revealed functional Cre recombinase activity in a predicted mesangial pattern. However, mating between two different PDGFBR-Cre or Ren1(d)-Cre strains with Itgb8 (flox/-) mice consistently resulted in incomplete recombination, with no renal phenotype in mosaic offspring. Induction of a renal phenotype with Habu snake venom, a reversible mesangiolytic agent, caused exaggerated glomerular capillary microaneurysms and delayed recovery in Cre(+/-) PDGFRB (flox/-) mice compared with Cre(+/-) PDGFRB (flox/+) control mice. To establish the mechanism, in vitro experiments were conducted in Itgb8-null versus Itgb8-expressing mesangial cells and fibroblasts, which revealed ß8-integrin-regulated adhesion to Arg-Gly-Asp (RGD) peptides within a mesangial-conditioned matrix as well as ß8-integrin-dependent migration on RGD-containing LTGF-ß or vitronectin matrices. We speculate that kidney αvß8-integrin indirectly controls glomerular capillary integrity through mechanical tension generated by binding RGD peptides in the mesangial matrix, and healing after glomerular injury may be facilitated by mesangial cell migration, which is guided by transient ß8-integrin interactions with RGD ligands.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Capilares
/
Integrinas
/
Células Mesangiais
/
Glomérulos Renais
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Am J Physiol Renal Physiol
Assunto da revista:
FISIOLOGIA
/
NEFROLOGIA
Ano de publicação:
2014
Tipo de documento:
Article