Entanglement model of antibody viscosity.
J Phys Chem B
; 118(19): 5044-9, 2014 May 15.
Article
em En
| MEDLINE
| ID: mdl-24758234
Antibody solutions are typically much more viscous than solutions of globular proteins at equivalent volume fraction. Here we propose that this is due to molecular entanglements that are caused by the elongated shape and intrinsic flexibility of antibody molecules. We present a simple theory in which the antibodies are modeled as linear polymers that can grow via reversible bonds between the antigen binding domains. This mechanism explains the observation that relatively subtle changes to the interparticle interaction can lead to large changes in the viscosity. The theory explains the presence of distinct power law regimes in the concentration dependence of the viscosity as well as the correlation between the viscosity and the charge on the variable domain in our antistreptavidin IgG1 model system.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Imunoglobulina G
/
Estreptavidina
/
Modelos Químicos
/
Anticorpos Monoclonais
/
Complexo Antígeno-Anticorpo
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
J Phys Chem B
Assunto da revista:
QUIMICA
Ano de publicação:
2014
Tipo de documento:
Article
País de afiliação:
Estados Unidos